Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
from tensorflow.keras.models import load_model
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
model = load_model("pneumonia_cnn_model.h5")
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Preprocessing function for uploaded X-ray images
|
11 |
def preprocess_image(image):
|
@@ -13,7 +18,8 @@ def preprocess_image(image):
|
|
13 |
image = image.resize((150, 150)) # Resize to model's expected input
|
14 |
image_array = np.array(image) / 255.0 # Normalize pixel values
|
15 |
image_array = np.expand_dims(image_array, axis=-1) # Add channel dimension
|
16 |
-
image_array = np.expand_dims(image_array, axis=0)
|
|
|
17 |
return image_array
|
18 |
|
19 |
# Prediction function
|
@@ -21,11 +27,13 @@ def predict(image):
|
|
21 |
try:
|
22 |
image_array = preprocess_image(image)
|
23 |
prediction = model.predict(image_array)[0][0]
|
24 |
-
label = "Pneumonia" if prediction > 0.5 else "Normal"
|
25 |
confidence = prediction if prediction > 0.5 else 1 - prediction
|
26 |
return f"{label} ({confidence * 100:.2f}% confidence)"
|
27 |
except Exception as e:
|
28 |
-
|
|
|
|
|
29 |
|
30 |
# Gradio interface
|
31 |
interface = gr.Interface(
|
@@ -38,5 +46,5 @@ interface = gr.Interface(
|
|
38 |
allow_flagging="never"
|
39 |
)
|
40 |
|
41 |
-
#
|
42 |
interface.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
from PIL import Image
|
5 |
+
import traceback
|
6 |
|
7 |
+
# Load the trained model
|
8 |
+
try:
|
9 |
+
model = load_model("pneumonia_cnn_model.h5", compile=False)
|
10 |
+
print("β
Model loaded successfully!")
|
11 |
+
except Exception as e:
|
12 |
+
print("β Failed to load model:", e)
|
13 |
+
raise
|
14 |
|
15 |
# Preprocessing function for uploaded X-ray images
|
16 |
def preprocess_image(image):
|
|
|
18 |
image = image.resize((150, 150)) # Resize to model's expected input
|
19 |
image_array = np.array(image) / 255.0 # Normalize pixel values
|
20 |
image_array = np.expand_dims(image_array, axis=-1) # Add channel dimension
|
21 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
22 |
+
print("π· Preprocessed image shape:", image_array.shape)
|
23 |
return image_array
|
24 |
|
25 |
# Prediction function
|
|
|
27 |
try:
|
28 |
image_array = preprocess_image(image)
|
29 |
prediction = model.predict(image_array)[0][0]
|
30 |
+
label = "π¦ Pneumonia" if prediction > 0.5 else "β
Normal"
|
31 |
confidence = prediction if prediction > 0.5 else 1 - prediction
|
32 |
return f"{label} ({confidence * 100:.2f}% confidence)"
|
33 |
except Exception as e:
|
34 |
+
traceback_str = traceback.format_exc()
|
35 |
+
print("β Prediction error:\n", traceback_str)
|
36 |
+
return f"Error during prediction: {str(e)}"
|
37 |
|
38 |
# Gradio interface
|
39 |
interface = gr.Interface(
|
|
|
46 |
allow_flagging="never"
|
47 |
)
|
48 |
|
49 |
+
# Launch interface (for Hugging Face Spaces)
|
50 |
interface.launch(debug=True)
|