Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,46 @@
|
|
1 |
-
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
import
|
4 |
from tensorflow.keras.models import load_model
|
|
|
5 |
from tensorflow.keras.preprocessing import image
|
6 |
-
from tensorflow.keras import backend as K
|
7 |
|
8 |
-
#
|
9 |
-
# Custom metrics definitions
|
10 |
-
# ---------------------------
|
11 |
def recall(y_true, y_pred):
|
12 |
-
true_positives =
|
13 |
-
possible_positives =
|
14 |
-
recall = true_positives / (possible_positives +
|
15 |
return recall
|
16 |
|
17 |
def precision(y_true, y_pred):
|
18 |
-
true_positives =
|
19 |
-
predicted_positives =
|
20 |
-
precision = true_positives / (predicted_positives +
|
21 |
return precision
|
22 |
|
23 |
def f1(y_true, y_pred):
|
24 |
-
|
25 |
-
|
26 |
-
return 2*((
|
27 |
|
28 |
-
#
|
29 |
-
# Load model with custom objects
|
30 |
-
# ---------------------------
|
31 |
model = load_model("pneumonia_cnn_model.h5", custom_objects={'f1': f1, 'precision': precision, 'recall': recall})
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
img =
|
38 |
-
img = img.
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
return f"Prediction: {label} ({confidence*100:.2f}%)"
|
47 |
-
|
48 |
-
# ---------------------------
|
49 |
-
# Gradio interface
|
50 |
-
# ---------------------------
|
51 |
-
interface = gr.Interface(fn=predict_pneumonia,
|
52 |
inputs=gr.Image(type="pil"),
|
53 |
outputs="text",
|
54 |
-
title="Pneumonia Detection
|
55 |
-
description="Upload a chest X-ray image to predict
|
56 |
|
57 |
-
#
|
58 |
-
# Launch
|
59 |
-
# ---------------------------
|
60 |
interface.launch()
|
|
|
|
|
1 |
import tensorflow as tf
|
2 |
+
import gradio as gr
|
3 |
from tensorflow.keras.models import load_model
|
4 |
+
import numpy as np
|
5 |
from tensorflow.keras.preprocessing import image
|
|
|
6 |
|
7 |
+
# ---- Define custom metrics ----
|
|
|
|
|
8 |
def recall(y_true, y_pred):
|
9 |
+
true_positives = tf.keras.backend.sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1)))
|
10 |
+
possible_positives = tf.keras.backend.sum(tf.keras.backend.round(tf.keras.backend.clip(y_true, 0, 1)))
|
11 |
+
recall = true_positives / (possible_positives + tf.keras.backend.epsilon())
|
12 |
return recall
|
13 |
|
14 |
def precision(y_true, y_pred):
|
15 |
+
true_positives = tf.keras.backend.sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1)))
|
16 |
+
predicted_positives = tf.keras.backend.sum(tf.keras.backend.round(tf.keras.backend.clip(y_pred, 0, 1)))
|
17 |
+
precision = true_positives / (predicted_positives + tf.keras.backend.epsilon())
|
18 |
return precision
|
19 |
|
20 |
def f1(y_true, y_pred):
|
21 |
+
p = precision(y_true, y_pred)
|
22 |
+
r = recall(y_true, y_pred)
|
23 |
+
return 2 * ((p * r) / (p + r + tf.keras.backend.epsilon()))
|
24 |
|
25 |
+
# ---- Load the model ----
|
|
|
|
|
26 |
model = load_model("pneumonia_cnn_model.h5", custom_objects={'f1': f1, 'precision': precision, 'recall': recall})
|
27 |
|
28 |
+
# ---- Define prediction function ----
|
29 |
+
def predict_image(img):
|
30 |
+
img = img.resize((150, 150)) # Make sure this matches your training image size
|
31 |
+
img = image.img_to_array(img)
|
32 |
+
img = np.expand_dims(img, axis=0)
|
33 |
+
img = img / 255.0
|
34 |
+
prediction = model.predict(img)[0][0]
|
35 |
+
label = "Pneumonia" if prediction > 0.5 else "Normal"
|
36 |
+
return f"Prediction: {label} ({prediction:.2f})"
|
37 |
+
|
38 |
+
# ---- Create Gradio Interface ----
|
39 |
+
interface = gr.Interface(fn=predict_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
inputs=gr.Image(type="pil"),
|
41 |
outputs="text",
|
42 |
+
title="Pneumonia Detection",
|
43 |
+
description="Upload a chest X-ray image to predict if it shows signs of pneumonia.")
|
44 |
|
45 |
+
# ---- Launch ----
|
|
|
|
|
46 |
interface.launch()
|