Update app.py
Browse files
app.py
CHANGED
@@ -1,148 +1,36 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torchvision import transforms as T
|
4 |
-
import os
|
5 |
import gradio as gr
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
])
|
42 |
-
|
43 |
-
|
44 |
-
#################################
|
45 |
-
# Define model architecture
|
46 |
-
#################################
|
47 |
-
|
48 |
-
class ConvolutionalNetwork(nn.Module):
|
49 |
-
def __init__(self):
|
50 |
-
super().__init__()
|
51 |
-
|
52 |
-
self.conv1 = nn.Sequential(
|
53 |
-
nn.Conv2d(3, 8, 3, stride=1, padding=1),
|
54 |
-
nn.ReLU(inplace=True),
|
55 |
-
nn.BatchNorm2d(8),
|
56 |
-
nn.MaxPool2d(2,2))
|
57 |
-
|
58 |
-
self.conv2 = nn.Sequential(
|
59 |
-
nn.Conv2d(8, 16, 3, stride=1, padding=1),
|
60 |
-
nn.ReLU(inplace=True),
|
61 |
-
nn.BatchNorm2d(16),
|
62 |
-
nn.MaxPool2d(2,2))
|
63 |
-
|
64 |
-
self.conv3 = nn.Sequential(
|
65 |
-
nn.Conv2d(16, 32, 3, stride=1, padding=1),
|
66 |
-
nn.ReLU(inplace=True),
|
67 |
-
nn.BatchNorm2d(32),
|
68 |
-
nn.MaxPool2d(2,2))
|
69 |
-
|
70 |
-
self.conv4 = nn.Sequential(
|
71 |
-
nn.Conv2d(32, 64, 3, stride=1, padding=1),
|
72 |
-
nn.ReLU(inplace=True),
|
73 |
-
nn.BatchNorm2d(64),
|
74 |
-
nn.MaxPool2d(2,2))
|
75 |
-
|
76 |
-
self.conv5 = nn.Sequential(
|
77 |
-
nn.Conv2d(64, 128, 3, stride=1, padding=1),
|
78 |
-
nn.ReLU(inplace=True),
|
79 |
-
nn.BatchNorm2d(128),
|
80 |
-
nn.MaxPool2d(2,2))
|
81 |
-
|
82 |
-
self.fc = nn.Sequential(
|
83 |
-
nn.Linear(128*7*7, 512),
|
84 |
-
nn.ReLU(inplace=True),
|
85 |
-
nn.BatchNorm1d(512),
|
86 |
-
nn.Dropout(0.5),
|
87 |
-
nn.Linear(512, 2))
|
88 |
-
|
89 |
-
def forward(self, x):
|
90 |
-
x = self.conv1(x)
|
91 |
-
x = self.conv2(x)
|
92 |
-
x = self.conv3(x)
|
93 |
-
x = self.conv4(x)
|
94 |
-
x = self.conv5(x)
|
95 |
-
x = x.view(x.shape[0], -1)
|
96 |
-
x = self.fc(x)
|
97 |
-
return x
|
98 |
-
|
99 |
-
|
100 |
-
cnn_model = ConvolutionalNetwork()
|
101 |
-
|
102 |
-
cnn_model.to(device)
|
103 |
-
|
104 |
-
status = cnn_model.load_state_dict(torch.load('pneumonia_cnn_model.pt', map_location=device, weights_only=True))
|
105 |
-
print(f"Status: {status}")
|
106 |
-
|
107 |
-
#################################
|
108 |
-
# Define the prediction fucntion
|
109 |
-
#################################
|
110 |
-
|
111 |
-
def predict(image):
|
112 |
-
"""Transforms and performs a prediction on an image and returns the prediction dictionary."""
|
113 |
-
|
114 |
-
image = test_transform_custom(image).unsqueeze(0)
|
115 |
-
|
116 |
-
cnn_model.eval()
|
117 |
-
with torch.no_grad():
|
118 |
-
pred_probs = torch.softmax(cnn_model(image), dim=1)
|
119 |
-
|
120 |
-
# Create a prediction probability dictionary for each prediction class
|
121 |
-
pred_dict = {config.class_names[i]: float(pred_probs[0][i]) for i in range(len(config.class_names))}
|
122 |
-
|
123 |
-
# Return the prediction dictionary
|
124 |
-
return pred_dict
|
125 |
-
|
126 |
-
##########################
|
127 |
-
# Create the Gradio demo
|
128 |
-
##########################
|
129 |
-
|
130 |
-
title = "Pneumonia Detection"
|
131 |
-
|
132 |
-
description = """This is a pneumonia detection model that uses a custom convolutional neural network to predict whether an image contains pneumonia or not. \
|
133 |
-
GitHub project can be accessed [here](https://github.com/mma666/Pneumonia-Detection-Computer-Vision).
|
134 |
-
"""
|
135 |
-
|
136 |
-
# Create examples list from "examples/" directory
|
137 |
-
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
138 |
-
|
139 |
-
# Create the Gradio demo
|
140 |
-
demo = gr.Interface(fn=predict,
|
141 |
-
inputs=[gr.Image(label="Upload image", type="pil", height=320, width=320)],
|
142 |
-
outputs=[gr.Label(num_top_classes=2, label="Predictions")],
|
143 |
-
examples=example_list,
|
144 |
-
title=title,
|
145 |
-
description=description,
|
146 |
-
cache_examples=False)
|
147 |
-
|
148 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing import image
|
6 |
+
|
7 |
+
# Load the trained model
|
8 |
+
model = load_model("pneumonia_cnn_model.h5", custom_objects={
|
9 |
+
'f1': lambda y_true, y_pred: 2*((precision(y_true, y_pred)*recall(y_true, y_pred)) / (precision(y_true, y_pred)+recall(y_true, y_pred)+tf.keras.backend.epsilon())),
|
10 |
+
'precision': precision,
|
11 |
+
'recall': recall
|
12 |
+
})
|
13 |
+
|
14 |
+
# Preprocessing function
|
15 |
+
def predict_pneumonia(img):
|
16 |
+
img = img.convert('L') # convert to grayscale
|
17 |
+
img = img.resize((299, 299))
|
18 |
+
img_array = image.img_to_array(img)
|
19 |
+
img_array = img_array / 255.0
|
20 |
+
img_array = np.expand_dims(img_array, axis=0) # batch dimension
|
21 |
+
prediction = model.predict(img_array)[0][0]
|
22 |
+
|
23 |
+
if prediction >= 0.5:
|
24 |
+
return "PNEUMONIA 🫁 (Confidence: {:.2f}%)".format(prediction * 100)
|
25 |
+
else:
|
26 |
+
return "NORMAL ✅ (Confidence: {:.2f}%)".format((1 - prediction) * 100)
|
27 |
+
|
28 |
+
# Gradio interface
|
29 |
+
interface = gr.Interface(fn=predict_pneumonia,
|
30 |
+
inputs=gr.Image(type="pil"),
|
31 |
+
outputs="text",
|
32 |
+
title="Pneumonia Detection from Chest X-rays",
|
33 |
+
description="Upload a chest X-ray image to detect Pneumonia using a CNN model.")
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|