File size: 15,825 Bytes
821e207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d674e
821e207
 
15d674e
 
f753b2d
 
e8dad3c
15d674e
 
e8dad3c
15d674e
e8dad3c
821e207
e8dad3c
821e207
 
 
 
 
 
 
 
 
 
 
 
 
 
f753b2d
821e207
 
 
 
 
 
 
 
 
 
f753b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821e207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8dad3c
821e207
 
e8dad3c
821e207
 
e8dad3c
 
821e207
 
 
 
 
 
e8dad3c
821e207
 
e8dad3c
821e207
e8dad3c
 
 
 
821e207
 
 
 
 
 
 
 
 
 
 
e8dad3c
821e207
 
 
 
 
f753b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821e207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f753b2d
821e207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f753b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821e207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import streamlit as st
import tensorflow as tf
from tensorflow.keras import backend
import numpy as np
import matplotlib.pyplot as plt
import cv2
from PIL import Image
import os
import io
import gdown
from transformers import TFSegformerForSemanticSegmentation

st.set_page_config(
    page_title="Pet Segmentation with SegFormer",
    page_icon="๐Ÿถ",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Constants for image preprocessing
IMAGE_SIZE = 512
OUTPUT_SIZE = 128
MEAN = tf.constant([0.485, 0.456, 0.406])
STD = tf.constant([0.229, 0.224, 0.225])

# Class labels
ID2LABEL = {0: "background", 1: "border", 2: "foreground/pet"}
NUM_CLASSES = len(ID2LABEL)


@st.cache_resource
def download_model_from_drive():
    model_path = "tf_model.h5"
    if not os.path.exists(model_path):       
        # Fix the Google Drive link format - this is why the download is failing
        url = "https://drive.google.com/uc?id=1XObpqG8qZ7YUyiRKbpVvxX11yQSK8Y_3"  
        try:
            gdown.download(url, model_path, quiet=False)
            st.success("Model downloaded successfully from Google Drive.")
        except Exception as e:
            st.error(f"Failed to download model: {e}")
            return None
    else:
        st.info("Model already exists locally.")
    return model_path

@st.cache_resource
def load_model():
    """
    Load the SegFormer model
    
    Returns:
        Loaded model
    """
    try:
        # Download the model first
        model_path = download_model_from_drive()
        
        if model_path is None or not os.path.exists(model_path):
            st.warning("Using default pretrained model since download failed")
            # Fall back to pretrained model
            model = TFSegformerForSemanticSegmentation.from_pretrained(
                "nvidia/mit-b0",
                num_labels=NUM_CLASSES,
                id2label=ID2LABEL,
                label2id={label: id for id, label in ID2LABEL.items()},
                ignore_mismatched_sizes=True
            )
        else:
            # For a HuggingFace model saved with SavedModel format
            st.info("Loading SegFormer model...")
            try:
                # First try loading as HuggingFace model
                model = TFSegformerForSemanticSegmentation.from_pretrained(
                    "nvidia/mit-b0",
                    num_labels=NUM_CLASSES,
                    id2label=ID2LABEL,
                    label2id={label: id for id, label in ID2LABEL.items()},
                    ignore_mismatched_sizes=True
                )
                # Then load weights from h5 file
                model.load_weights(model_path)
                st.success("Model weights loaded successfully")
            except Exception as e:
                st.error(f"Error loading model weights: {str(e)}")
                st.warning("Falling back to pretrained model")
                model = TFSegformerForSemanticSegmentation.from_pretrained(
                    "nvidia/mit-b0",
                    num_labels=NUM_CLASSES,
                    id2label=ID2LABEL,
                    label2id={label: id for id, label in ID2LABEL.items()},
                    ignore_mismatched_sizes=True
                )
        
        return model
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        st.error("Falling back to pretrained model")
        # Fall back to pretrained model as a last resort
        model = TFSegformerForSemanticSegmentation.from_pretrained(
            "nvidia/mit-b0",
            num_labels=NUM_CLASSES,
            id2label=ID2LABEL,
            label2id={label: id for id, label in ID2LABEL.items()},
            ignore_mismatched_sizes=True
        )
        return model

def normalize_image(input_image):
    """
    Normalize the input image
    
    Args:
        input_image: Image to normalize
        
    Returns:
        Normalized image
    """
    input_image = tf.image.convert_image_dtype(input_image, tf.float32)
    input_image = (input_image - MEAN) / tf.maximum(STD, backend.epsilon())
    return input_image

def preprocess_image(image):
    """
    Preprocess image for model input
    
    Args:
        image: PIL Image to preprocess
        
    Returns:
        Preprocessed image tensor, original image
    """
    # Convert PIL Image to numpy array
    img_array = np.array(image.convert('RGB'))
    
    # Store original image for display
    original_img = img_array.copy()
    
    # Resize to target size
    img_resized = tf.image.resize(img_array, (IMAGE_SIZE, IMAGE_SIZE))
    
    # Normalize
    img_normalized = normalize_image(img_resized)
    
    # Transpose from HWC to CHW (SegFormer expects channels first)
    img_transposed = tf.transpose(img_normalized, (2, 0, 1))
    
    # Add batch dimension
    img_batch = tf.expand_dims(img_transposed, axis=0)
    
    return img_batch, original_img

def create_mask(pred_mask):
    """
    Convert model prediction to displayable mask
    
    Args:
        pred_mask: Prediction logits from the model
        
    Returns:
        Processed mask (2D array)
    """
    pred_mask = tf.math.argmax(pred_mask, axis=1)
    pred_mask = tf.squeeze(pred_mask, axis=0)  # Remove batch dimension
    return pred_mask.numpy()

def colorize_mask(mask):
    """
    Apply colors to segmentation mask
    
    Args:
        mask: Segmentation mask (2D array)
        
    Returns:
        Colorized mask (3D RGB array)
    """
    # Ensure the mask is 2D
    if len(mask.shape) > 2:
        mask = np.squeeze(mask, axis=-1)
    
    # Define colors for each class (RGB)
    colors = [
        [0, 0, 0],      # Background (black)
        [255, 0, 0],    # Border (red)
        [0, 0, 255]     # Foreground/pet (blue)
    ]
    
    # Create RGB mask
    rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8)
    
    for i, color in enumerate(colors):
        class_mask = (mask == i).astype(np.uint8)
        for c in range(3):
            rgb_mask[:, :, c] += class_mask * color[c]
    
    return rgb_mask

def calculate_iou(y_true, y_pred, class_idx=None):
    """
    Calculate IoU (Intersection over Union) for segmentation masks
    
    Args:
        y_true: Ground truth segmentation mask
        y_pred: Predicted segmentation mask
        class_idx: Index of the class to calculate IoU for (None for mean IoU)
        
    Returns:
        IoU score
    """
    if class_idx is not None:
        # Binary IoU for specific class
        y_true_class = (y_true == class_idx).astype(np.float32)
        y_pred_class = (y_pred == class_idx).astype(np.float32)
        
        intersection = np.sum(y_true_class * y_pred_class)
        union = np.sum(y_true_class) + np.sum(y_pred_class) - intersection
        
        iou = intersection / (union + 1e-6)
    else:
        # Mean IoU across all classes
        class_ious = []
        for idx in range(NUM_CLASSES):
            class_iou = calculate_iou(y_true, y_pred, idx)
            class_ious.append(class_iou)
        
        iou = np.mean(class_ious)
    
    return iou

def create_overlay(image, mask, alpha=0.5):
    """
    Create an overlay of mask on original image
    
    Args:
        image: Original image
        mask: Segmentation mask
        alpha: Transparency level (0-1)
        
    Returns:
        Overlay image
    """
    # Ensure mask shape matches image
    if image.shape[:2] != mask.shape[:2]:
        mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
    
    # Create blend
    overlay = cv2.addWeighted(
        image, 
        1, 
        mask.astype(np.uint8), 
        alpha, 
        0
    )
    
    return overlay

def main():
    st.title("๐Ÿถ Pet Segmentation with SegFormer")
    st.markdown("""
        This app demonstrates semantic segmentation of pet images using a SegFormer model.
        The model segments images into three classes:
        - **Background**: Areas around the pet
        - **Border**: The boundary/outline around the pet
        - **Foreground**: The pet itself
    """)
    
    # Sidebar
    st.sidebar.header("Model Information")
    st.sidebar.markdown("""
        **SegFormer** is a state-of-the-art semantic segmentation model based on transformers.
        
        Key features:
        - Hierarchical transformer encoder
        - Lightweight MLP decoder
        - Efficient mix of local and global attention
        
        This implementation uses the MIT-B0 variant fine-tuned on the Oxford-IIIT Pet dataset.
    """)
    
    # Advanced settings in sidebar
    st.sidebar.header("Settings")
    
    # Overlay opacity
    overlay_opacity = st.sidebar.slider(
        "Overlay Opacity", 
        min_value=0.1, 
        max_value=1.0, 
        value=0.5, 
        step=0.1
    )
    
    # Load model
    with st.spinner("Loading SegFormer model..."):
        model = load_model()
        
    if model is None:
        st.error("Failed to load model. Using default pretrained model instead.")
    else:
        st.sidebar.success("Model loaded successfully!")
    
    # Image upload
    st.header("Upload an Image")
    uploaded_image = st.file_uploader("Upload a pet image:", type=["jpg", "jpeg", "png"])
    uploaded_mask = st.file_uploader("Upload ground truth mask (optional):", type=["png", "jpg", "jpeg"])
    
    # Sample images option
    st.markdown("### Or use a sample image:")
    sample_dir = "samples"
    
    # Check if sample directory exists and contains images
    sample_files = []
    if os.path.exists(sample_dir):
        sample_files = [f for f in os.listdir(sample_dir) if f.endswith(('.jpg', '.jpeg', '.png'))]
    
    if sample_files:
        selected_sample = st.selectbox("Select a sample image:", sample_files)
        use_sample = st.button("Use this sample")
        
        if use_sample:
            with open(os.path.join(sample_dir, selected_sample), "rb") as file:
                image_bytes = file.read()
                uploaded_image = io.BytesIO(image_bytes)
                st.success(f"Using sample image: {selected_sample}")
    
    # Process uploaded image
    if uploaded_image is not None:
        # Display original image
        image = Image.open(uploaded_image)
        
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("Original Image")
            st.image(image, caption="Uploaded Image", use_column_width=True)
        
        # Preprocess and predict
        with st.spinner("Generating segmentation mask..."):
            # Preprocess the image
            img_tensor, original_img = preprocess_image(image)
            
            # Make prediction
            prediction = model(pixel_values=img_tensor, training=False)
            logits = prediction.logits
            
            # Create visualization mask
            mask = create_mask(logits).numpy()
            
            # Colorize the mask
            colorized_mask = colorize_mask(mask)
            
            # Create overlay
            overlay = create_overlay(original_img, colorized_mask, alpha=overlay_opacity)
        
        # Display results
        with col2:
            st.subheader("Segmentation Result")
            st.image(overlay, caption="Segmentation Overlay", use_column_width=True)
        
        # Display segmentation details
        st.header("Segmentation Details")
        col1, col2, col3 = st.columns(3)
        
        with col1:
            st.subheader("Background")
            st.markdown("Areas surrounding the pet")
            mask_bg = np.where(mask == 0, 255, 0).astype(np.uint8)
            st.image(mask_bg, caption="Background", use_column_width=True)
            
        with col2:
            st.subheader("Border")
            st.markdown("Boundary around the pet")
            mask_border = np.where(mask == 1, 255, 0).astype(np.uint8)
            st.image(mask_border, caption="Border", use_column_width=True)
            
        with col3:
            st.subheader("Foreground (Pet)")
            st.markdown("The pet itself")
            mask_fg = np.where(mask == 2, 255, 0).astype(np.uint8)
            st.image(mask_fg, caption="Foreground", use_column_width=True)
        
        # Calculate IoU if ground truth is uploaded
        if uploaded_mask is not None:
            try:
                # Read and process the mask file
                mask_data = uploaded_mask.read()
                st.write(f"Uploaded mask size: {len(mask_data)} bytes")
                
                # Open the mask from bytes
                mask_io = io.BytesIO(mask_data)
                gt_mask = np.array(Image.open(mask_io).resize((OUTPUT_SIZE, OUTPUT_SIZE), Image.NEAREST))
                
                # Handle different mask formats
                if len(gt_mask.shape) == 3 and gt_mask.shape[2] == 3:
                    # Convert RGB to single channel if needed
                    gt_mask = cv2.cvtColor(gt_mask, cv2.COLOR_RGB2GRAY)
                
                # Calculate and display IoU
                iou_score = calculate_iou(gt_mask, mask)
                st.success(f"Mean IoU: {iou_score:.4f}")
                
                # Display specific class IoUs
                st.markdown("### IoU by Class")
                col1, col2, col3 = st.columns(3)
                with col1:
                    bg_iou = calculate_iou(gt_mask, mask, 0)
                    st.metric("Background IoU", f"{bg_iou:.4f}")
                with col2:
                    border_iou = calculate_iou(gt_mask, mask, 1)
                    st.metric("Border IoU", f"{border_iou:.4f}")
                with col3:
                    fg_iou = calculate_iou(gt_mask, mask, 2)
                    st.metric("Foreground IoU", f"{fg_iou:.4f}")
            except Exception as e:
                st.error(f"Error processing ground truth mask: {e}")
                st.write("Please ensure the mask is valid and has the correct format.")
        
        # Download buttons
        col1, col2 = st.columns(2)
        
        with col1:
            # Convert mask to PNG for download
            mask_colored = Image.fromarray(colorized_mask)
            mask_bytes = io.BytesIO()
            mask_colored.save(mask_bytes, format='PNG')
            mask_bytes = mask_bytes.getvalue()
            
            st.download_button(
                label="Download Segmentation Mask",
                data=mask_bytes,
                file_name="pet_segmentation_mask.png",
                mime="image/png"
            )
        
        with col2:
            # Convert overlay to PNG for download
            overlay_img = Image.fromarray(overlay)
            overlay_bytes = io.BytesIO()
            overlay_img.save(overlay_bytes, format='PNG')
            overlay_bytes = overlay_bytes.getvalue()
            
            st.download_button(
                label="Download Overlay Image",
                data=overlay_bytes,
                file_name="pet_segmentation_overlay.png",
                mime="image/png"
            )
    
    # Footer with additional information
    st.markdown("---")
    st.markdown("### About the Model")
    st.markdown("""
        This segmentation model is based on the SegFormer architecture and was fine-tuned on the Oxford-IIIT Pet dataset.
        
        **Key Performance Metrics:**
        - Mean IoU (Intersection over Union): Measures overlap between predictions and ground truth
        - Dice Coefficient: Similar to F1-score, balances precision and recall
        
        The model segments pet images into three semantic classes (background, border, and pet/foreground),
        making it useful for applications like pet image editing, background removal, and object detection.
    """)

if __name__ == "__main__":
    main()