Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,20 @@ from peft import PeftModel
|
|
4 |
import torch
|
5 |
|
6 |
# Directory where your fine-tuned Phi-2 model and associated files are stored.
|
7 |
-
|
8 |
-
|
9 |
-
#
|
10 |
-
|
11 |
-
model_dir = "./phi2-qlora-finetuned"
|
12 |
|
13 |
-
# phi2-qlora-finetuned
|
14 |
# Load the tokenizer.
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
16 |
|
17 |
-
# Load the base model
|
18 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Load the adapter (PEFT) weights.
|
21 |
model = PeftModel.from_pretrained(base_model, model_dir)
|
@@ -26,7 +28,7 @@ def generate_response(prompt, max_new_tokens=200, temperature=0.7):
|
|
26 |
"""
|
27 |
# Tokenize the prompt and move tensors to the model's device.
|
28 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
29 |
-
|
30 |
# Generate output text using sampling.
|
31 |
outputs = model.generate(
|
32 |
**inputs,
|
@@ -34,7 +36,7 @@ def generate_response(prompt, max_new_tokens=200, temperature=0.7):
|
|
34 |
do_sample=True,
|
35 |
temperature=temperature
|
36 |
)
|
37 |
-
|
38 |
# Decode the generated tokens and return the response.
|
39 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
return response
|
|
|
4 |
import torch
|
5 |
|
6 |
# Directory where your fine-tuned Phi-2 model and associated files are stored.
|
7 |
+
model_dir = "./phi2-finetune"
|
8 |
+
|
9 |
+
# Directory to store offloaded model parts (for large models).
|
10 |
+
offload_dir = "./offload"
|
|
|
11 |
|
|
|
12 |
# Load the tokenizer.
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
14 |
|
15 |
+
# Load the base model with offloading support.
|
16 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
model_dir,
|
18 |
+
device_map="auto", # Automatically use available devices (GPU/CPU).
|
19 |
+
offload_folder=offload_dir # Directory to offload layers (for larger models).
|
20 |
+
)
|
21 |
|
22 |
# Load the adapter (PEFT) weights.
|
23 |
model = PeftModel.from_pretrained(base_model, model_dir)
|
|
|
28 |
"""
|
29 |
# Tokenize the prompt and move tensors to the model's device.
|
30 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
31 |
+
|
32 |
# Generate output text using sampling.
|
33 |
outputs = model.generate(
|
34 |
**inputs,
|
|
|
36 |
do_sample=True,
|
37 |
temperature=temperature
|
38 |
)
|
39 |
+
|
40 |
# Decode the generated tokens and return the response.
|
41 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
return response
|