Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import torch | |
# Directory where your fine-tuned Phi-2 model and associated files are stored. | |
# This directory should include files like: | |
# - adapter_config.json, adapter_model.safetensors, | |
# - tokenizer_config.json, tokenizer.json, merges.txt, | |
# - special_tokens_map.json, vocab.json, added_tokens.json, etc. | |
model_dir = "./phi2-finetune" | |
# Load the tokenizer. | |
tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
# Load the base model. (Assumes the base model files are in model_dir.) | |
base_model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto") | |
# Load the adapter (PEFT) weights. | |
model = PeftModel.from_pretrained(base_model, model_dir) | |
def generate_response(prompt, max_new_tokens=200, temperature=0.7): | |
""" | |
Generate a response from the fine-tuned Phi-2 model given a prompt. | |
""" | |
# Tokenize the prompt and move tensors to the model's device. | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Generate output text using sampling. | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature | |
) | |
# Decode the generated tokens and return the response. | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create a Gradio interface with example prompts. | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(lines=4, label="Input Prompt"), | |
gr.Slider(50, 500, value=200, label="Max New Tokens"), | |
gr.Slider(0.0, 1.0, value=0.7, label="Temperature") | |
], | |
outputs=gr.Textbox(label="Response"), | |
title="Phi-2 Fine-tuned Chat", | |
description="A Hugging Face Space app serving the fine-tuned Phi-2 model trained on OpenAssistant/oasst1 data.", | |
examples=[ | |
["Hello, how are you today?", 150, 0.7], | |
["Translate this sentence from English to French: I love programming.", 200, 0.8], | |
["Tell me a joke about artificial intelligence.", 180, 0.6] | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |