File size: 9,939 Bytes
bf87fbf
 
 
2eb6bed
bf87fbf
 
2eb6bed
 
 
 
 
 
bf87fbf
 
 
 
2eb6bed
 
 
 
 
 
bf87fbf
 
 
 
 
 
 
 
 
 
 
 
2eb6bed
bf87fbf
 
 
 
f53ddeb
 
d6e7dc9
bf87fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f53ddeb
 
 
 
 
d6e7dc9
b115eae
f53ddeb
b115eae
 
f53ddeb
 
 
b115eae
f53ddeb
 
d6e7dc9
 
 
f53ddeb
bf87fbf
 
f53ddeb
 
 
d6e7dc9
f53ddeb
bf87fbf
d6e7dc9
bf87fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e7dc9
2eb6bed
 
 
 
 
 
 
 
 
 
 
 
bf87fbf
d6e7dc9
dcb5a2c
 
 
 
 
 
 
 
 
 
 
 
 
bf87fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e7dc9
 
bf87fbf
 
 
 
b0ed0a7
 
 
 
 
 
 
bf87fbf
 
 
 
 
 
 
 
 
b115eae
 
dcb5a2c
bf87fbf
d6e7dc9
 
 
 
 
 
 
dcb5a2c
d6e7dc9
dcb5a2c
 
 
 
 
 
 
 
bf87fbf
 
 
 
 
 
 
d6e7dc9
 
bf87fbf
 
 
 
 
 
 
 
 
dcb5a2c
d6e7dc9
 
 
 
 
 
 
 
dcb5a2c
 
 
 
d6e7dc9
dcb5a2c
 
 
bf87fbf
 
 
dcb5a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf87fbf
 
 
 
 
dcb5a2c
 
 
 
 
 
 
 
 
bf87fbf
 
d6e7dc9
bf87fbf
2eb6bed
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import gradio as gr
import json
import os
import sys
import numpy as np

# Add the current directory to Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)

from tokenizers.basic import BasicTokenizer

def load_tokenizer(model_path, vocab_path):
    """Load the trained tokenizer"""
    tokenizer = BasicTokenizer()
    try:
        # Check if paths exist
        if not os.path.exists(model_path):
            raise FileNotFoundError(f"Model file not found at: {model_path}")
        if not os.path.exists(vocab_path):
            raise FileNotFoundError(f"Vocabulary file not found at: {vocab_path}")
            
        # Load the trained model
        tokenizer.load(model_path)
        
        # Load vocabulary
        with open(vocab_path, 'r', encoding='utf-8') as f:
            vocab_data = json.load(f)
            tokenizer.token_to_id = {k: int(v) for k, v in vocab_data['token_to_id'].items()}
            tokenizer.id_to_token = {int(k): v for k, v in vocab_data['id_to_token'].items()}
            tokenizer.merges = {tuple(map(int, k.split(','))): int(v) 
                              for k, v in vocab_data['merges'].items()}
        return tokenizer
    except Exception as e:
        raise Exception(f"Error loading tokenizer: {str(e)}")

def encode_text(text, tokenizer):
    """Encode text and return statistics"""
    if not text.strip():
        return ("Please enter some Telugu text", 
                "No statistics available",
                [])
    
    try:
        # Encode the text
        encoded = tokenizer.encode(text)
        
        # Calculate compression ratio
        original_size = len(text.encode('utf-8'))
        encoded_size = len(encoded) * 2
        compression_ratio = original_size / encoded_size
        
        # Prepare statistics
        stats = f"""
        📊 Encoding Statistics:
        • Original text length: {len(text)} characters
        • Encoded length: {len(encoded)} tokens
        • Compression ratio: {compression_ratio:.2f}X
        • Original size: {original_size} bytes
        • Encoded size: {encoded_size} bytes
        • Space saved: {(1 - encoded_size/original_size) * 100:.1f}%
        """
        
        # Create visualization data
        tokens = []
        
        # Generate colors based on token frequencies
        unique_tokens = set(encoded)
        # Create color map with string hex colors
        color_map = {token: f"#{hash(str(token)) % 0xFFFFFF:06x}" for token in unique_tokens}
        
        # Create visualization list with proper format
        visualization = []
        for token_id in encoded:
            token_bytes = tokenizer.vocab[token_id]
            token_text = token_bytes.decode('utf-8', errors='replace')
            visualization.append((token_text, color_map[token_id]))
        
        return (
            str(encoded),
            stats,
            visualization
        )
        
    except Exception as e:
        return (
            f"Error: {str(e)}",
            "Error occurred during encoding",
            []
        )

def decode_ids(encoded_ids_str):
    """Decode the encoded IDs back to text"""
    if not encoded_ids_str.strip():
        return "Please enter encoded IDs"
    
    try:
        # Convert string representation of list to actual list of integers
        encoded_ids = eval(encoded_ids_str)
        if not isinstance(encoded_ids, list):
            return "Invalid input: Please enter a list of integers"
        
        # Decode the IDs
        decoded_text = tokenizer.decode(encoded_ids)
        return decoded_text
    except Exception as e:
        return f"Error during decoding: {str(e)}"

# Load the tokenizer
try:
    model_path = os.path.join(current_dir, "models", "version_2", "checkpoints", "telugu_basic.model")
    vocab_path = os.path.join(current_dir, "models", "version_2", "vocabulary", "vocabulary.json")
    
    print(f"Loading model from: {model_path}")
    print(f"Loading vocabulary from: {vocab_path}")
    
    tokenizer = load_tokenizer(model_path, vocab_path)
    print("Tokenizer loaded successfully")
except Exception as e:
    print(f"Error loading tokenizer: {str(e)}")
    raise

# Example inputs
encoder_examples = [
    ["తెలుగు భాష చాలా అందమైనది", "Basic sentence example"],
    ["నేను తెలుగు నేర్చుకుంటున్నాను", "Learning Telugu example"],
    ["ప్రతి ఒక్కరూ సంతోషంగా ఉండాలి", "Happiness wish example"],
    ["అరణ్యంలో రాముడు అనేక రాక్షసులను సంహరిస్తాడు", "Complex sentence example"],
    ["తెలుగు సాహిత్యం చాలా సమృద్ధిగా ఉంది", "Literature example"]
]

decoder_examples = [
    ["[287, 2206, 1165, 960, 2132, 1558, 629, 286, 260]", "Basic sentence decoding"],
    ["[287, 2206, 1165, 960, 2132, 1558, 629, 286, 260, 287, 2206]", "Multiple tokens decoding"],
]

# Create the Gradio interface
with gr.Blocks(title="Telugu Text Tokenizer", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🔤 Telugu Text Tokenizer
    
    This tool helps you encode Telugu text into tokens and decode them back. 
    It uses a trained BPE (Byte Pair Encoding) tokenizer optimized for Telugu language.
    
    ## Features:
    - 🔄 Encode Telugu text to token IDs
    - 📊 View compression statistics
    - 🎨 Visualize token segmentation
    - ⚡ Fast and efficient encoding/decoding
    """)
    
    with gr.Tab("Encoder"):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(
                    label="Enter Telugu Text",
                    placeholder="Type or paste Telugu text here...",
                    lines=5,
                    interactive=True
                )
                encode_btn = gr.Button("🔄 Encode", variant="primary")
            
            with gr.Column():
                with gr.Row():
                    encoded_output = gr.Textbox(
                        label="Encoded Token IDs",
                        lines=5,
                        interactive=False,
                        show_copy_button=True
                    )
                stats_output = gr.Textbox(
                    label="Statistics",
                    lines=8,
                    interactive=False
                )
        
        with gr.Row():
            token_viz = gr.HighlightedText(
                label="Token Segmentation",
                show_legend=True,
                combine_adjacent=True,
                color_map={}
            )
        
        # Encoder button click event
        encode_btn.click(
            fn=lambda text: encode_text(text, tokenizer),
            inputs=[input_text],
            outputs=[encoded_output, stats_output, token_viz]
        )
            
        # Examples for encoder
        gr.Examples(
            examples=encoder_examples,
            inputs=input_text,
            outputs=[encoded_output, stats_output, token_viz],
            fn=lambda x: encode_text(x, tokenizer),
            cache_examples=True,
            label="Telugu Text Examples"
        )
    
    with gr.Tab("Decoder"):
        with gr.Row():
            with gr.Column():
                encoded_input = gr.Textbox(
                    label="Enter Encoded Token IDs",
                    placeholder="Paste the encoded token IDs here...",
                    lines=5,
                    interactive=True
                )
                decode_btn = gr.Button("🔄 Decode", variant="primary")
            
            with gr.Column():
                decoded_output = gr.Textbox(
                    label="Decoded Telugu Text",
                    lines=5,
                    interactive=False
                )
        
        # Decoder button click event
        decode_btn.click(
            fn=decode_ids,
            inputs=[encoded_input],
            outputs=[decoded_output]
        )
        
        # Examples for decoder
        gr.Examples(
            examples=decoder_examples,
            inputs=encoded_input,
            outputs=decoded_output,
            fn=decode_ids,
            cache_examples=True,
            label="Token ID Examples"
        )
    
    gr.Markdown("""
    ### 📝 Instructions:
    1. **Encoding**: 
       - Enter Telugu text in the encoder tab
       - Click "Encode" to get token IDs and statistics
       - Try the examples below to see how different texts are encoded
    
    2. **Decoding**: 
       - Copy the encoded IDs from the encoder output
       - Paste them in the decoder tab
       - Click "Decode" to get back the original text
       - Try the example token IDs to see how decoding works
    
    3. **Visualization**: 
       - Each token is highlighted with a unique color
       - Same tokens will have the same color
       - Hover over tokens to see their IDs
    
    ### 🎯 Example Usage:
    - Try encoding "తెలుగు" to see how basic words are tokenized
    - Use longer sentences to see compression in action
    - Copy encoded IDs and decode them back to verify accuracy
    
    ### ℹ️ Notes:
    - The tokenizer uses BPE (Byte Pair Encoding) algorithm
    - Compression ratio shows how efficiently the text is encoded
    - Different colors in visualization represent different tokens
    - Typical compression ratios range from 3x to 4x
    """)

    gr.Markdown("""
    ---
    ### 📌 Version Information
    - Model Version: 2.0
    - Vocabulary Size: 4800 tokens
    - Last Updated: 2024
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch(
        share=True,
        debug=True,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )