|
|
|
import os
|
|
import math
|
|
import time
|
|
import inspect
|
|
from dataclasses import dataclass
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert config.n_embd % config.n_head == 0
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
|
self.c_proj.NANGPT_SCALE_INIT = 1
|
|
|
|
self.n_head = config.n_head
|
|
self.n_embd = config.n_embd
|
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
|
|
|
|
|
|
qkv = self.c_attn(x)
|
|
q, k, v = qkv.split(self.n_embd, dim=2)
|
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
|
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
|
att = F.softmax(att, dim=-1)
|
|
y = att @ v
|
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
|
|
y = self.c_proj(y)
|
|
return y
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
|
self.gelu = nn.GELU(approximate='tanh')
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
|
self.c_proj.NANOGPT_SCALE_INIT = 1
|
|
|
|
def forward(self, x):
|
|
x = self.c_fc(x)
|
|
x = self.gelu(x)
|
|
x = self.c_proj(x)
|
|
return x
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln_1 = nn.LayerNorm(config.n_embd)
|
|
self.attn = CausalSelfAttention(config)
|
|
self.ln_2 = nn.LayerNorm(config.n_embd)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
|
|
@dataclass
|
|
class GPTConfig:
|
|
block_size: int = 1024
|
|
vocab_size: int = 50257
|
|
n_layer: int = 12
|
|
n_head: int = 12
|
|
n_embd: int = 768
|
|
|
|
|
|
class GPT(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.transformer = nn.ModuleDict(dict(
|
|
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
|
wpe = nn.Embedding(config.block_size, config.n_embd),
|
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
ln_f = nn.LayerNorm(config.n_embd),
|
|
))
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
std = 0.02
|
|
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
|
std *= (2 * self.config.n_layer) ** -0.5
|
|
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
|
|
|
|
|
|
|
def forward(self, idx, targets=None):
|
|
|
|
B, T = idx.size()
|
|
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
|
|
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
|
|
pos_emb = self.transformer.wpe(pos)
|
|
tok_emb = self.transformer.wte(idx)
|
|
x = tok_emb + pos_emb
|
|
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
|
|
x = self.transformer.ln_f(x)
|
|
logits = self.lm_head(x)
|
|
loss = None
|
|
if targets is not None:
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
|
return logits, loss
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, model_type):
|
|
"""Loads pretrained GPT-2 model weights from huggingface"""
|
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
|
from transformers import GPT2LMHeadModel
|
|
print("loading weights from pretrained gpt: %s" % model_type)
|
|
|
|
|
|
config_args = {
|
|
'gpt2': dict(n_layer=12, n_head=12, n_embd=768),
|
|
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024),
|
|
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280),
|
|
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600),
|
|
}[model_type]
|
|
config_args['vocab_size'] = 50257
|
|
config_args['block_size'] = 1024
|
|
|
|
config = GPTConfig(**config_args)
|
|
model = GPT(config)
|
|
sd = model.state_dict()
|
|
sd_keys = sd.keys()
|
|
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')]
|
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
|
sd_hf = model_hf.state_dict()
|
|
|
|
|
|
sd_keys_hf = sd_hf.keys()
|
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')]
|
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')]
|
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
|
|
|
|
|
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
|
for k in sd_keys_hf:
|
|
if any(k.endswith(w) for w in transposed):
|
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape
|
|
with torch.no_grad():
|
|
sd[k].copy_(sd_hf[k].t())
|
|
else:
|
|
|
|
assert sd_hf[k].shape == sd[k].shape
|
|
with torch.no_grad():
|
|
sd[k].copy_(sd_hf[k])
|
|
|
|
return model
|
|
|
|
|
|
|
|
device = 'cpu'
|
|
if torch.cuda.is_available():
|
|
device = 'cuda'
|
|
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
|
device = "mps"
|
|
print(f"using device: {device}")
|
|
|
|
|
|
torch.manual_seed(1337)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed(1337)
|
|
|
|
|
|
num_return_sequences = 5
|
|
max_length = 30
|
|
|
|
|
|
|
|
import tiktoken
|
|
|
|
class DataLoaderLite:
|
|
def __init__(self, B, T):
|
|
self.B = B
|
|
self.T = T
|
|
|
|
|
|
with open('data/input.txt', 'r') as f:
|
|
text = f.read()
|
|
enc = tiktoken.get_encoding('gpt2')
|
|
tokens = enc.encode(text)
|
|
self.tokens = torch.tensor(tokens)
|
|
print(f'loaded {len(self.tokens)} tokens')
|
|
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
|
|
|
|
|
self.current_position = 0
|
|
|
|
def next_batch(self):
|
|
B, T = self.B, self.T
|
|
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
|
x = (buf[:-1]).view(B, T)
|
|
y = (buf[1:]).view(B, T)
|
|
|
|
self.current_position += B*T
|
|
|
|
if self.current_position + (B * T + 1) > len(self.tokens):
|
|
self.current_position = 0
|
|
return x, y
|
|
|
|
|
|
model = GPT(GPTConfig())
|
|
model.to(device)
|
|
|
|
train_loader = DataLoaderLite(B = 4, T = 32)
|
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
|
for i in range(50):
|
|
x, y = train_loader.next_batch()
|
|
x, y = x.to(device), y.to(device)
|
|
optimizer.zero_grad()
|
|
logits, loss = model(x, y)
|
|
loss.backward()
|
|
optimizer.step()
|
|
print(f'step{i}, loss: {loss.item()}')
|
|
|
|
|
|
print(loss)
|
|
import sys; sys.exit(0)
|
|
|
|
torch.manual_seed(42)
|
|
torch.cuda.manual_seed(42)
|
|
while x.size(1) < max_length:
|
|
|
|
with torch.no_grad():
|
|
logits = model(x)[0]
|
|
|
|
logits = logits[:, -1, :]
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
|
|
|
|
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
|
|
|
|
|
ix = torch.multinomial(topk_probs, 1)
|
|
|
|
xcol = torch.gather(topk_indices, -1, ix)
|
|
|
|
x = torch.cat((x, xcol), dim=1)
|
|
|
|
|
|
for i in range(num_return_sequences):
|
|
tokens = x[i, :max_length].tolist()
|
|
decoded = enc.decode(tokens)
|
|
print(">", decoded) |