File size: 2,772 Bytes
73ab266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
import pyarrow.parquet as pq
import pyarrow.compute as pc
from transformers import AutoTokenizer
import os
import numpy as np


token_table = pq.read_table("weights/tokens.parquet")
cache_path = "weights/caches"
parquets = os.listdir(cache_path)
TOKENIZER = "microsoft/Phi-3-mini-4k-instruct"

nearby = 8
stride = 0.25
n_bins = 10

with gr.Blocks() as demo:
    feature_table = gr.State(None)

    tokenizer_name = gr.Textbox(TOKENIZER)
    dropdown = gr.Dropdown(parquets)
    feature_input = gr.Number(0)
    token_range = gr.Number(64)

    frequency = gr.Number(0, label="Total frequency (%)")
    histogram = gr.LinePlot(x="activation", y="freq")
    cm = gr.HighlightedText()
    frame = gr.Highlightedtext(
        show_legend=True
    )

    def update(cache_name, feature, tokenizer_name, token_range):
        if cache_name is None:
            return
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
        table = pq.read_table(f"{cache_path}/{cache_name}")
        table_feat = table.filter(pc.field("feature") == feature).to_pandas()

        freq_t = table_feat[["activation", "freq"]]
        total_freq = float(table_feat["freq"].sum()) * 100
        

        table_feat = table_feat[table_feat["activation"] > 0]
        table_feat = table_feat[table_feat["freq"] > 0]

        table_feat = table_feat.sort_values("activation", ascending=False)

        texts = table_feat["token"].apply(
            lambda x: tokenizer.decode(token_table[max(0, x - nearby - 1):x + nearby + 1]["tokens"].to_numpy())
        )

        texts = [tokenizer.tokenize(text) for text in texts]
        activations = table_feat["nearby"].to_numpy()
        if len(activations) > 0:
            activations = np.stack(activations) * stride
            max_act = table_feat["activation"].max()
            activations = activations / max_act

            highlight_data = [
                [(token, activation) for token, activation in zip(text, activation)] + [("\n", 0)]
                for text, activation in zip(texts, activations)
            ]

            flat_data = [item for sublist in highlight_data for item in sublist]
            
            color_map_data = [i / n_bins for i in range(n_bins + 1)]
            color_map_data = [(f"{i*max_act:.2f}", i) for i in color_map_data]
        else:
            flat_data = []
            color_map_data = []

        return flat_data, color_map_data, freq_t, total_freq
        

    dropdown.change(update, [dropdown, feature_input, tokenizer_name, token_range], [frame, cm, histogram, frequency])
    feature_input.change(update, [dropdown, feature_input, tokenizer_name, token_range], [frame, cm, histogram, frequency])


if __name__ == "__main__":
    demo.launch(share=True)