Spaces:
Running
Running
File size: 17,958 Bytes
355b607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
{
"cells": [
{
"cell_type": "markdown",
"id": "7bfc3afd-0868-4938-9b45-19b2cba1a149",
"metadata": {},
"source": [
"## Setting Up"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d102db92-a346-447d-8c61-3be8292adec7",
"metadata": {
"executionCancelledAt": null,
"executionTime": 22644,
"lastExecutedAt": 1744298182897,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "%%capture\n%pip install langchain\n%pip install langchain-community \n%pip install langchainhub \n%pip install langchain-chroma \n%pip install langchain-groq\n%pip install langchain-huggingface\n%pip install unstructured[docx]"
},
"outputs": [],
"source": [
"%%capture\n",
"%pip install langchain\n",
"%pip install langchain-community \n",
"%pip install langchainhub \n",
"%pip install langchain-chroma \n",
"%pip install langchain-groq\n",
"%pip install langchain-huggingface\n",
"%pip install unstructured[docx]"
]
},
{
"cell_type": "markdown",
"id": "356e4c03-5642-4d21-8ee4-bc32b14e98ec",
"metadata": {},
"source": [
"## Groq Python API"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4e8b89b9-f5bc-466b-a30f-db8e97828826",
"metadata": {
"executionCancelledAt": null,
"executionTime": 3176,
"lastExecutedAt": 1744298186074,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "import os\nfrom groq import Groq\n\ngroq_api_key = os.environ.get(\"GROQ_API_KEY\")\n\nclient = Groq(\n api_key=groq_api_key,\n)\n\n\nchat_streaming = client.chat.completions.create(\n messages=[\n {\"role\": \"system\", \"content\": \"You are a professional Data Engineer.\"},\n {\"role\": \"user\", \"content\": \"Can you explain how the data lake works?\"},\n ],\n model=\"meta-llama/llama-4-scout-17b-16e-instruct\",\n temperature=0.3,\n max_tokens=1200,\n top_p=1,\n stop=None,\n stream=True,\n)\n\nfor chunk in chat_streaming:\n print(chunk.choices[0].delta.content, end=\"\")",
"outputsMetadata": {
"0": {
"height": 469,
"type": "stream"
}
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"As a Data Engineer, I'd be happy to explain how a data lake works.\n",
"\n",
"**What is a Data Lake?**\n",
"\n",
"A data lake is a centralized repository that stores raw, unprocessed data in its native format. It's a scalable and flexible storage solution that allows you to store and process large amounts of structured, semi-structured, and unstructured data. The data lake is often used as a precursor to data warehousing, data analytics, and machine learning.\n",
"\n",
"**Key Components of a Data Lake**\n",
"\n",
"1. **Storage**: The storage layer is the foundation of a data lake. It's typically a distributed file system, such as Hadoop Distributed File System (HDFS), Amazon S3, Azure Data Lake Storage (ADLS), or Google Cloud Storage (GCS). This layer stores raw data in its native format, without any transformation or processing.\n",
"2. **Data Ingestion**: Data ingestion is the process of collecting data from various sources and loading it into the data lake. This can be done through various methods, such as batch processing, streaming, or manual uploads.\n",
"3. **Data Processing**: The data processing layer is responsible for transforming and processing the raw data into a usable format. This can be done using various processing frameworks, such as Apache Spark, Apache Flink, or Azure Databricks.\n",
"4. **Metadata Management**: Metadata management is critical in a data lake, as it provides context and meaning to the stored data. This includes information such as data schema, data lineage, and data quality.\n",
"\n",
"**How a Data Lake Works**\n",
"\n",
"Here's a step-by-step overview of how a data lake works:\n",
"\n",
"1. **Data Ingestion**: Data is collected from various sources, such as databases, applications, IoT devices, or social media platforms.\n",
"2. **Data Landing**: The ingested data is landed in the data lake's storage layer, where it's stored in its native format.\n",
"3. **Data Processing**: The raw data is processed and transformed into a usable format using various processing frameworks.\n",
"4. **Data Cataloging**: The processed data is cataloged, which involves creating metadata that describes the data, such as its schema, format, and quality.\n",
"5. **Data Analysis**: The processed and cataloged data is made available for analysis, reporting, and machine learning.\n",
"\n",
"**Benefits of a Data Lake**\n",
"\n",
"The data lake offers several benefits, including:\n",
"\n",
"1. **Scalability**: Data lakes can store large amounts of data and scale horizontally as needed.\n",
"2. **Flexibility**: Data lakes can store various types of data, including structured, semi-structured, and unstructured data.\n",
"3. **Cost-Effective**: Data lakes can be more cost-effective than traditional data warehousing solutions.\n",
"4. **Improved Data Quality**: Data lakes provide a single source of truth for data, which improves data quality and reduces data duplication.\n",
"\n",
"**Common Use Cases for a Data Lake**\n",
"\n",
"1. **Data Warehousing**: Data lakes can be used as a precursor to data warehousing, providing a centralized repository for data before it's loaded into a data warehouse.\n",
"2. **Big Data Analytics**: Data lakes can be used for big data analytics, providing a scalable and flexible storage solution for large datasets.\n",
"3. **Machine Learning**: Data lakes can be used as a data source for machine learning models, providing a large and diverse dataset for training and testing.\n",
"4. **Data Archiving**: Data lakes can be used for data archiving, providing a cost-effective solution for storing historical data.\n",
"\n",
"I hope this helps! Do you have any specific questions about data lakes or would you like me to elaborate on any of these points?None"
]
}
],
"source": [
"import os\n",
"from groq import Groq\n",
"\n",
"groq_api_key = os.environ.get(\"GROQ_API_KEY\")\n",
"\n",
"client = Groq(\n",
" api_key=groq_api_key,\n",
")\n",
"\n",
"\n",
"chat_streaming = client.chat.completions.create(\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": \"You are a professional Data Engineer.\"},\n",
" {\"role\": \"user\", \"content\": \"Can you explain how the data lake works?\"},\n",
" ],\n",
" model=\"meta-llama/llama-4-scout-17b-16e-instruct\",\n",
" temperature=0.3,\n",
" max_tokens=1200,\n",
" top_p=1,\n",
" stop=None,\n",
" stream=True,\n",
")\n",
"\n",
"for chunk in chat_streaming:\n",
" print(chunk.choices[0].delta.content, end=\"\")"
]
},
{
"cell_type": "markdown",
"id": "b1849fe7-4641-44c4-a91f-27976d2c1918",
"metadata": {},
"source": [
"## Initiating LLM and Embedding"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "65583358-ce96-4657-9b4b-fabc5a2f195e",
"metadata": {
"executionCancelledAt": null,
"executionTime": 560,
"lastExecutedAt": 1744298186634,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "from langchain_groq import ChatGroq\n\nllm = ChatGroq(model=\"meta-llama/llama-4-scout-17b-16e-instruct\", api_key=groq_api_key)"
},
"outputs": [],
"source": [
"from langchain_groq import ChatGroq\n",
"\n",
"llm = ChatGroq(model=\"meta-llama/llama-4-scout-17b-16e-instruct\", api_key=groq_api_key)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "70675683-6a4f-4331-b8b5-6c4e348fa389",
"metadata": {
"executionCancelledAt": null,
"executionTime": 661,
"lastExecutedAt": 1744298599903,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "from langchain_huggingface import HuggingFaceEmbeddings\nembed_model = HuggingFaceEmbeddings(model_name=\"mixedbread-ai/mxbai-embed-large-v1\")",
"outputsMetadata": {
"0": {
"height": 437,
"type": "stream"
}
}
},
"outputs": [],
"source": [
"from langchain_huggingface import HuggingFaceEmbeddings\n",
"embed_model = HuggingFaceEmbeddings(model_name=\"mixedbread-ai/mxbai-embed-large-v1\")"
]
},
{
"cell_type": "markdown",
"id": "ff2b277e-dc31-4801-bd05-ffda3265523b",
"metadata": {},
"source": [
"## Loading and spliting the data"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "12390e24-2c8f-4690-8060-69eea3c224a0",
"metadata": {
"executionCancelledAt": null,
"executionTime": 1932,
"lastExecutedAt": 1744298196669,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "from langchain_community.document_loaders import DirectoryLoader\nfrom langchain.text_splitter import RecursiveCharacterTextSplitter\n\n# Initialize the text splitter\ntext_splitter = RecursiveCharacterTextSplitter(\n chunk_size=500,\n chunk_overlap=50,\n separators=[\"\\n\\n\", \"\\n\"]\n)\n\n# Load the .docx files\nloader = DirectoryLoader(\"./\", glob=\"*.docx\", use_multithreading=True)\ndocuments = loader.load()\n\n# Split the documents into chunks\nchunks = text_splitter.split_documents(documents)\n\n# Print the number of chunks\nprint(len(chunks))\n"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"29\n"
]
}
],
"source": [
"from langchain_community.document_loaders import DirectoryLoader\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"# Initialize the text splitter\n",
"text_splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size=1000,\n",
" chunk_overlap=100,\n",
" separators=[\"\\n\\n\", \"\\n\"]\n",
")\n",
"\n",
"# Load the .docx files\n",
"loader = DirectoryLoader(\"./\", glob=\"*.docx\", use_multithreading=True)\n",
"documents = loader.load()\n",
"\n",
"# Split the documents into chunks\n",
"chunks = text_splitter.split_documents(documents)\n",
"\n",
"# Print the number of chunks\n",
"print(len(chunks))\n"
]
},
{
"cell_type": "markdown",
"id": "26085a16-42c8-4c6c-958f-9c1e2cc62b23",
"metadata": {},
"source": [
"## Creating the Vector Store"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b27426d6-a218-4a44-9067-a9d4509e59c4",
"metadata": {
"executionCancelledAt": null,
"executionTime": 8773,
"lastExecutedAt": 1744298205442,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "from langchain_chroma import Chroma\n\nvectorstore = Chroma.from_documents(\n documents=chunks,\n embedding=embed_model,\n persist_directory=\"./Vectordb\",\n)",
"outputsMetadata": {
"0": {
"height": 101,
"type": "stream"
}
}
},
"outputs": [],
"source": [
"from langchain_chroma import Chroma\n",
"\n",
"vectorstore = Chroma.from_documents(\n",
" documents=chunks,\n",
" embedding=embed_model,\n",
" persist_directory=\"./Vectordb\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "633bbbfa-36ac-426e-8599-0f3bfb3b80ea",
"metadata": {
"executionCancelledAt": null,
"executionTime": 166,
"lastExecutedAt": 1744298366376,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "query = \"What this tutorial about?\"\ndocs = vectorstore.similarity_search(query)\nprint(docs[0].page_content)",
"outputsMetadata": {
"0": {
"height": 122,
"type": "stream"
}
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Learn how to Fine-tune Stable Diffusion XL with DreamBooth and LoRA on your personal images. \n",
"\n",
"Let’s try another prompt:\n",
"\n",
"Prompt:\n"
]
}
],
"source": [
"query = \"What this tutorial about?\"\n",
"docs = vectorstore.similarity_search(query)\n",
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "304a6177-9f74-40a5-bac9-eb2df32a8bff",
"metadata": {},
"source": [
"## Creating the RAG pipeline"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "5e3cd149-3009-4a12-98ed-8873d3bf9ab5",
"metadata": {
"executionCancelledAt": null,
"executionTime": 49,
"lastExecutedAt": 1744298865976,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "# Create retriever\nretriever = vectorstore.as_retriever()\n\n# Import PromptTemplate\nfrom langchain_core.prompts import PromptTemplate\n\n# Define a clearer, more professional prompt template\ntemplate = \"\"\"You are an expert assistant tasked with answering questions based on the provided documents.\nUse only the given context to generate your answer.\nIf the answer cannot be found in the context, clearly state that you do not know.\nBe detailed and precise in your response, but avoid mentioning or referencing the context itself.\n\nContext:\n{context}\n\nQuestion:\n{question}\n\nAnswer:\"\"\"\n\n# Create the PromptTemplate\nrag_prompt = PromptTemplate.from_template(template)\n"
},
"outputs": [],
"source": [
"# Create retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Import PromptTemplate\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"# Define a clearer, more professional prompt template\n",
"template = \"\"\"You are an expert assistant tasked with answering questions based on the provided documents.\n",
"Use only the given context to generate your answer.\n",
"If the answer cannot be found in the context, clearly state that you do not know.\n",
"Be detailed and precise in your response, but avoid mentioning or referencing the context itself.\n",
"\n",
"Context:\n",
"{context}\n",
"\n",
"Question:\n",
"{question}\n",
"\n",
"Answer:\"\"\"\n",
"\n",
"# Create the PromptTemplate\n",
"rag_prompt = PromptTemplate.from_template(template)\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "889685f6-3e5e-4abb-8391-084bdb6b7d4d",
"metadata": {
"executionCancelledAt": null,
"executionTime": 48,
"lastExecutedAt": 1744298875804,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "from langchain_core.output_parsers import StrOutputParser\nfrom langchain_core.runnables import RunnablePassthrough\n\nrag_chain = (\n {\"context\": retriever, \"question\": RunnablePassthrough()}\n | rag_prompt\n | llm\n | StrOutputParser()\n)"
},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"rag_chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | rag_prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "ee406271-90d6-453b-a2aa-4753f08d30e5",
"metadata": {
"executionCancelledAt": null,
"executionTime": 888,
"lastExecutedAt": 1744298897317,
"lastExecutedByKernel": "b0791251-777d-414c-b5cc-636b4f317d9a",
"lastScheduledRunId": null,
"lastSuccessfullyExecutedCode": "from IPython.display import display, Markdown\n\nresponse = rag_chain.invoke(\"What this tutorial about?\")\nMarkdown(response)"
},
"outputs": [
{
"data": {
"text/markdown": [
"This tutorial is about setting up and using the Janus project, specifically Janus Pro, a multimodal model that can understand images and generate images from text prompts, and building a local solution to use the model privately on a laptop GPU. It covers learning about the Janus Series, setting up the Janus project, building a Docker container to run the model locally, and testing its capabilities with various image and text prompts."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import display, Markdown\n",
"\n",
"response = rag_chain.invoke(\"What this tutorial about?\")\n",
"Markdown(response)"
]
}
],
"metadata": {
"colab": {
"name": "Welcome to DataCamp Workspaces.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|