File size: 10,479 Bytes
9b3bd46
355b607
9b3bd46
355b607
9b3bd46
 
355b607
9b3bd46
 
355b607
 
 
9b3bd46
355b607
 
 
9b3bd46
355b607
 
 
9b3bd46
 
355b607
 
d3fff43
355b607
 
9b3bd46
 
 
 
 
 
 
 
 
 
355b607
9b3bd46
 
 
355b607
 
9b3bd46
355b607
 
 
 
 
 
 
 
 
 
 
9b3bd46
355b607
 
9b3bd46
 
 
 
355b607
 
9b3bd46
355b607
9b3bd46
355b607
 
9b3bd46
 
 
355b607
9b3bd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355b607
9b3bd46
 
 
 
 
355b607
9b3bd46
355b607
 
9b3bd46
 
 
 
 
 
 
 
 
 
 
 
355b607
9b3bd46
355b607
 
 
 
 
9b3bd46
355b607
9b3bd46
 
 
355b607
9b3bd46
 
355b607
9b3bd46
 
 
 
355b607
9b3bd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355b607
9b3bd46
 
355b607
9b3bd46
355b607
 
9b3bd46
355b607
 
9b3bd46
355b607
9b3bd46
 
 
355b607
 
9b3bd46
355b607
 
9b3bd46
355b607
9b3bd46
 
 
 
 
 
 
 
 
 
 
 
 
 
355b607
9b3bd46
 
 
 
 
 
 
 
 
 
355b607
 
9b3bd46
 
 
 
 
355b607
 
 
 
9b3bd46
 
 
 
 
 
355b607
9b3bd46
355b607
 
 
9b3bd46
355b607
9b3bd46
355b607
 
 
 
 
 
9b3bd46
355b607
 
9b3bd46
355b607
 
 
 
9b3bd46
 
 
 
 
 
355b607
 
9b3bd46
355b607
 
 
 
9b3bd46
355b607
9b3bd46
355b607
9b3bd46
 
 
 
 
 
 
355b607
 
9b3bd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355b607
9b3bd46
 
 
 
355b607
9b3bd46
355b607
9b3bd46
 
 
 
355b607
9b3bd46
 
 
 
355b607
9b3bd46
355b607
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# ========== Standard Library ==========
import os
import tempfile
import zipfile
from typing import List, Optional, Tuple, Union
import collections


# ========== Third-Party Libraries ==========
import gradio as gr
from groq import Groq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import DirectoryLoader, UnstructuredFileLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings

# ========== Configs ==========
TITLE = """<h1 align="center">πŸ—¨οΈπŸ¦™ Llama 4 Docx Chatter</h1>"""
AVATAR_IMAGES = (
    None,
    "./logo.png",
)

# Acceptable file extensions
TEXT_EXTENSIONS = [".docx", ".zip"]

# ========== Models & Clients ==========
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
llm = ChatGroq(model="meta-llama/llama-4-scout-17b-16e-instruct", api_key=GROQ_API_KEY)
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")

# ========== Core Components ==========
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=100,
    separators=["\n\n", "\n"],
)

rag_template = """You are an expert assistant tasked with answering questions based on the provided documents.
Use only the given context to generate your answer.
If the answer cannot be found in the context, clearly state that you do not know.
Be detailed and precise in your response, but avoid mentioning or referencing the context itself.

Context:
{context}

Question:
{question}

Answer:"""
rag_prompt = PromptTemplate.from_template(rag_template)


# ========== App State ==========
class AppState:
    vectorstore: Optional[InMemoryVectorStore] = None
    rag_chain = None


state = AppState()

# ========== Utility Functions ==========


def load_documents_from_files(files: List[str]) -> List:
    """Load documents from uploaded files directly without moving."""
    all_documents = []

    # Temporary directory if ZIP needs extraction
    with tempfile.TemporaryDirectory() as temp_dir:
        for file_path in files:
            ext = os.path.splitext(file_path)[1].lower()

            if ext == ".zip":
                # Extract ZIP inside temp_dir
                with zipfile.ZipFile(file_path, "r") as zip_ref:
                    zip_ref.extractall(temp_dir)

                # Load all docx from extracted zip
                loader = DirectoryLoader(
                    path=temp_dir,
                    glob="**/*.docx",
                    use_multithreading=True,
                )
                docs = loader.load()
                all_documents.extend(docs)

            elif ext == ".docx":
                # Load single docx directly
                loader = UnstructuredFileLoader(file_path)
                docs = loader.load()
                all_documents.extend(docs)

    return all_documents


def get_last_user_message(chatbot: List[Union[gr.ChatMessage, dict]]) -> Optional[str]:
    """Get last user prompt."""
    for message in reversed(chatbot):
        content = (
            message.get("content") if isinstance(message, dict) else message.content
        )
        if (
            message.get("role") if isinstance(message, dict) else message.role
        ) == "user":
            return content
    return None


# ========== Main Logic ==========




def upload_files(
    files: Optional[List[str]], chatbot: List[Union[gr.ChatMessage, dict]]
):
    """Handle file upload - .docx or .zip containing docx."""
    if not files:
        return chatbot

    file_summaries = []  # <-- Collect formatted file/folder info
    documents = []

    with tempfile.TemporaryDirectory() as temp_dir:
        for file_path in files:
            filename = os.path.basename(file_path)
            ext = os.path.splitext(file_path)[1].lower()

            if ext == ".zip":
                file_summaries.append(f"πŸ“¦ **{filename}** (ZIP file) contains:")
                try:
                    with zipfile.ZipFile(file_path, "r") as zip_ref:
                        zip_ref.extractall(temp_dir)
                        zip_contents = zip_ref.namelist()

                        # Group files by folder
                        folder_map = collections.defaultdict(list)
                        for item in zip_contents:
                            if item.endswith("/"):
                                continue  # skip folder entries themselves
                            folder = os.path.dirname(item)
                            file_name = os.path.basename(item)
                            folder_map[folder].append(file_name)

                        # Format nicely
                        for folder, files_in_folder in folder_map.items():
                            if folder:
                                file_summaries.append(f"πŸ“‚ {folder}/")
                            else:
                                file_summaries.append(f"πŸ“„ (root)")
                            for f in files_in_folder:
                                file_summaries.append(f"   - {f}")

                    # Load docx files extracted from ZIP
                    loader = DirectoryLoader(
                        path=temp_dir,
                        glob="**/*.docx",
                        use_multithreading=True,
                    )
                    docs = loader.load()
                    documents.extend(docs)

                except zipfile.BadZipFile:
                    chatbot.append(
                        gr.ChatMessage(
                            role="assistant",
                            content=f"❌ Failed to open ZIP file: {filename}",
                        )
                    )

            elif ext == ".docx":
                file_summaries.append(f"πŸ“„ **{filename}**")
                loader = UnstructuredFileLoader(file_path)
                docs = loader.load()
                documents.extend(docs)

            else:
                file_summaries.append(f"❌ Unsupported file type: {filename}")

    if not documents:
        chatbot.append(
            gr.ChatMessage(
                role="assistant", content="No valid .docx files found in upload."
            )
        )
        return chatbot

    # Split documents
    chunks = text_splitter.split_documents(documents)
    if not chunks:
        chatbot.append(
            gr.ChatMessage(
                role="assistant", content="Failed to split documents into chunks."
            )
        )
        return chatbot

    # Create Vectorstore
    state.vectorstore = InMemoryVectorStore.from_documents(
        documents=chunks,
        embedding=embed_model,
    )
    retriever = state.vectorstore.as_retriever()

    # Build RAG Chain
    state.rag_chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | rag_prompt
        | llm
        | StrOutputParser()
    )

    # Final display
    chatbot.append(
        gr.ChatMessage(
            role="assistant",
            content="**Uploaded Files:**\n"
            + "\n".join(file_summaries)
            + "\n\nβœ… Ready to chat!",
        )
    )
    return chatbot


def user_message(
    text_prompt: str, chatbot: List[Union[gr.ChatMessage, dict]]
) -> Tuple[str, List[Union[gr.ChatMessage, dict]]]:
    """Add user's text input to conversation."""
    if text_prompt.strip():
        chatbot.append(gr.ChatMessage(role="user", content=text_prompt))
    return "", chatbot


def process_query(
    chatbot: List[Union[gr.ChatMessage, dict]],
) -> List[Union[gr.ChatMessage, dict]]:
    """Process user's query through RAG pipeline."""
    prompt = get_last_user_message(chatbot)
    if not prompt:
        chatbot.append(
            gr.ChatMessage(role="assistant", content="Please type a question first.")
        )
        return chatbot

    if state.rag_chain is None:
        chatbot.append(
            gr.ChatMessage(role="assistant", content="Please upload documents first.")
        )
        return chatbot

    chatbot.append(gr.ChatMessage(role="assistant", content="Thinking..."))

    try:
        response = state.rag_chain.invoke(prompt)
        chatbot[-1].content = response
    except Exception as e:
        chatbot[-1].content = f"Error: {str(e)}"

    return chatbot


def reset_app(
    chatbot: List[Union[gr.ChatMessage, dict]],
) -> List[Union[gr.ChatMessage, dict]]:
    """Reset application state."""
    state.vectorstore = None
    state.rag_chain = None
    return [
        gr.ChatMessage(
            role="assistant", content="App reset! Upload new documents to start."
        )
    ]


# ========== UI Layout ==========

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.HTML(TITLE)
    chatbot = gr.Chatbot(
        label="Llama 4 RAG",
        type="messages",
        bubble_full_width=False,
        avatar_images=AVATAR_IMAGES,
        scale=2,
        height=350,
    )

    with gr.Row(equal_height=True):
        text_prompt = gr.Textbox(
            placeholder="Ask a question...", show_label=False, autofocus=True, scale=28
        )
        send_button = gr.Button(
            value="Send",
            variant="primary",
            scale=1,
            min_width=80,
        )
        upload_button = gr.UploadButton(
            label="Upload",
            file_count="multiple",
            file_types=TEXT_EXTENSIONS,
            scale=1,
            min_width=80,
        )
        reset_button = gr.Button(
            value="Reset",
            variant="stop",
            scale=1,
            min_width=80,
        )

    send_button.click(
        fn=user_message,
        inputs=[text_prompt, chatbot],
        outputs=[text_prompt, chatbot],
        queue=False,
    ).then(fn=process_query, inputs=[chatbot], outputs=[chatbot])

    text_prompt.submit(
        fn=user_message,
        inputs=[text_prompt, chatbot],
        outputs=[text_prompt, chatbot],
        queue=False,
    ).then(fn=process_query, inputs=[chatbot], outputs=[chatbot])

    upload_button.upload(
        fn=upload_files, inputs=[upload_button, chatbot], outputs=[chatbot], queue=False
    )
    reset_button.click(fn=reset_app, inputs=[chatbot], outputs=[chatbot], queue=False)

demo.queue().launch()