Spaces:
Running
Running
File size: 10,820 Bytes
25851fb 73d76b4 61bf4d9 c9ceb74 25851fb c9ceb74 73d76b4 2673193 61bf4d9 c9ceb74 61bf4d9 2673193 25851fb c9ceb74 61bf4d9 2673193 c9ceb74 8a7a11f 2673193 73d76b4 c9ceb74 73d76b4 2673193 8a7a11f 2673193 8a7a11f 73d76b4 2673193 c9ceb74 61bf4d9 c9ceb74 61bf4d9 8a7a11f 61bf4d9 8a7a11f c9ceb74 61bf4d9 8a7a11f 61bf4d9 c9ceb74 8a7a11f 61bf4d9 73d76b4 61bf4d9 c9ceb74 61bf4d9 8a7a11f c9ceb74 61bf4d9 c9ceb74 61bf4d9 2673193 61bf4d9 8a7a11f 61bf4d9 25851fb c9ceb74 8a7a11f c9ceb74 8a7a11f c9ceb74 8a7a11f c9ceb74 73d76b4 c9ceb74 8a7a11f c9ceb74 61bf4d9 8a7a11f 73d76b4 8a7a11f 61bf4d9 73d76b4 8a7a11f 73d76b4 25851fb 2673193 73d76b4 2673193 73d76b4 8a7a11f 61bf4d9 25851fb 61bf4d9 25851fb 73d76b4 61bf4d9 c9ceb74 8a7a11f 73d76b4 8a7a11f c9ceb74 61bf4d9 73d76b4 61bf4d9 2673193 61bf4d9 73d76b4 61bf4d9 25851fb c9ceb74 8a7a11f dc10a73 c9ceb74 73d76b4 c9ceb74 dc10a73 2673193 61bf4d9 73d76b4 c9ceb74 61bf4d9 8a7a11f 61bf4d9 25851fb 8a7a11f 25851fb 8a7a11f 61bf4d9 73d76b4 61bf4d9 8a7a11f 61bf4d9 73d76b4 61bf4d9 8a7a11f 2673193 25851fb c9ceb74 25851fb c9ceb74 61bf4d9 c9ceb74 8a7a11f c9ceb74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gc
import os
import datetime
import time
# --- Configuration ---
MODEL_ID = "naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B"
MAX_NEW_TOKENS = 512
CPU_THREAD_COUNT = 4 # νμμ μ‘°μ
# --- Optional: Set CPU Threads ---
# torch.set_num_threads(CPU_THREAD_COUNT)
# os.environ["OMP_NUM_THREADS"] = str(CPU_THREAD_COUNT)
# os.environ["MKL_NUM_THREADS"] = str(CPU_THREAD_COUNT)
print("--- Environment Setup ---")
print(f"PyTorch version: {torch.__version__}")
print(f"Running on device: cpu")
print(f"Torch Threads: {torch.get_num_threads()}")
# --- Model and Tokenizer Loading ---
print(f"--- Loading Model: {MODEL_ID} ---")
print("This might take a few minutes, especially on the first launch...")
model = None
tokenizer = None
load_successful = False
stop_token_ids_list = [] # Initialize stop_token_ids_list
try:
start_load_time = time.time()
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float32,
device_map="cpu",
# force_download=True # Keep commented unless cache issues reappear
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
# force_download=True # Keep commented
)
model.eval()
load_time = time.time() - start_load_time
print(f"--- Model and Tokenizer Loaded Successfully on CPU in {load_time:.2f} seconds ---")
load_successful = True
# --- Stop Token Configuration ---
stop_token_strings = ["<|endofturn|>", "<|stop|>"]
temp_stop_ids = [tokenizer.convert_tokens_to_ids(token) for token in stop_token_strings]
if tokenizer.eos_token_id is not None and tokenizer.eos_token_id not in temp_stop_ids:
temp_stop_ids.append(tokenizer.eos_token_id)
elif tokenizer.eos_token_id is None:
print("Warning: tokenizer.eos_token_id is None. Cannot add to stop tokens.")
stop_token_ids_list = [tid for tid in temp_stop_ids if tid is not None] # Assign to the global scope variable
if not stop_token_ids_list:
print("Warning: Could not find any stop token IDs. Using default EOS if available, otherwise generation might not stop correctly.")
if tokenizer.eos_token_id is not None:
stop_token_ids_list = [tokenizer.eos_token_id]
else:
print("Error: No stop tokens found, including default EOS. Generation may run indefinitely.")
# Consider raising an error or setting a default if this is critical
print(f"Using Stop Token IDs: {stop_token_ids_list}")
except Exception as e:
print(f"!!! Error loading model: {e}")
if 'model' in locals() and model is not None: del model
if 'tokenizer' in locals() and tokenizer is not None: del tokenizer
gc.collect()
# Raise Gradio error to display in the Space UI if loading fails
raise gr.Error(f"Failed to load the model {MODEL_ID}. Cannot start the application. Error: {e}")
# --- System Prompt Definition ---
def get_system_prompt():
current_date = datetime.datetime.now().strftime("%Y-%m-%d (%A)")
return (
f"- AI μΈμ΄λͺ¨λΈμ μ΄λ¦μ \"CLOVA X\" μ΄λ©° λ€μ΄λ²μμ λ§λ€μλ€.\n"
# f"- μ€λμ {current_date}μ΄λ€.\n" # Uncomment if needed
f"- μ¬μ©μμ μ§λ¬Έμ λν΄ μΉμ νκ³ μμΈνκ² νκ΅μ΄λ‘ λ΅λ³ν΄μΌ νλ€."
)
# --- Warm-up Function ---
def warmup_model():
if not load_successful or model is None or tokenizer is None:
print("Skipping warmup: Model not loaded successfully.")
return
print("--- Starting Model Warm-up ---")
try:
start_warmup_time = time.time()
warmup_message = "μλ
νμΈμ"
system_prompt = get_system_prompt()
warmup_chat = [
{"role": "tool_list", "content": ""},
{"role": "system", "content": system_prompt},
{"role": "user", "content": warmup_message}
]
inputs = tokenizer.apply_chat_template(
warmup_chat,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
).to("cpu")
# Check if stop_token_ids_list is empty and handle appropriately
gen_kwargs = {
"max_new_tokens": 10,
"pad_token_id": tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id,
"do_sample": False
}
if stop_token_ids_list:
gen_kwargs["eos_token_id"] = stop_token_ids_list
else:
print("Warmup Warning: No stop tokens defined for generation.")
with torch.no_grad():
output_ids = model.generate(**inputs, **gen_kwargs)
# Optional: Decode warmup response for verification
# response = tokenizer.decode(output_ids[0, inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# print(f"Warm-up response (decoded): {response}")
del inputs
del output_ids
gc.collect()
warmup_time = time.time() - start_warmup_time
print(f"--- Model Warm-up Completed in {warmup_time:.2f} seconds ---")
except Exception as e:
print(f"!!! Error during model warm-up: {e}")
finally:
gc.collect()
# --- Inference Function ---
def predict(message, history):
"""
Generates response using HyperCLOVAX.
Assumes 'history' is in the Gradio 'messages' format: List[Dict].
"""
if model is None or tokenizer is None:
return "μ€λ₯: λͺ¨λΈμ΄ λ‘λλμ§ μμμ΅λλ€."
system_prompt = get_system_prompt()
# Start with system prompt
chat_history_formatted = [
{"role": "tool_list", "content": ""}, # As required by model card
{"role": "system", "content": system_prompt}
]
# Append history (List of {'role': 'user'/'assistant', 'content': '...'})
if isinstance(history, list): # Check if history is a list
for turn in history:
# Validate turn format
if isinstance(turn, dict) and "role" in turn and "content" in turn:
chat_history_formatted.append(turn)
# Handle potential older tuple format if necessary (though less likely now)
elif isinstance(turn, (list, tuple)) and len(turn) == 2:
print(f"Warning: Received history item in tuple format: {turn}. Converting to messages format.")
chat_history_formatted.append({"role": "user", "content": turn[0]})
if turn[1]: # Ensure assistant message exists
chat_history_formatted.append({"role": "assistant", "content": turn[1]})
else:
print(f"Warning: Skipping unexpected history format item: {turn}")
# Append the latest user message
chat_history_formatted.append({"role": "user", "content": message})
inputs = None
output_ids = None
try:
inputs = tokenizer.apply_chat_template(
chat_history_formatted,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
).to("cpu")
input_length = inputs['input_ids'].shape[1]
print(f"\nInput tokens: {input_length}")
except Exception as e:
print(f"!!! Error applying chat template: {e}")
return f"μ€λ₯: μ
λ ₯ νμμ μ²λ¦¬νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€. ({e})"
try:
print("Generating response...")
generation_start_time = time.time()
# Prepare generation arguments, handling empty stop_token_ids_list
gen_kwargs = {
"max_new_tokens": MAX_NEW_TOKENS,
"pad_token_id": tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id,
"do_sample": True,
"temperature": 0.7,
"top_p": 0.9,
}
if stop_token_ids_list:
gen_kwargs["eos_token_id"] = stop_token_ids_list
else:
print("Generation Warning: No stop tokens defined.")
with torch.no_grad():
output_ids = model.generate(**inputs, **gen_kwargs)
generation_time = time.time() - generation_start_time
print(f"Generation complete in {generation_time:.2f} seconds.")
except Exception as e:
print(f"!!! Error during model generation: {e}")
if inputs is not None: del inputs
if output_ids is not None: del output_ids
gc.collect()
return f"μ€λ₯: μλ΅μ μμ±νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€. ({e})"
# Decode the response
response = "μ€λ₯: μλ΅ μμ±μ μ€ν¨νμ΅λλ€."
if output_ids is not None:
try:
new_tokens = output_ids[0, input_length:]
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
print(f"Output tokens: {len(new_tokens)}")
del new_tokens
except Exception as e:
print(f"!!! Error decoding response: {e}")
response = "μ€λ₯: μλ΅μ λμ½λ©νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€."
# Clean up memory
if inputs is not None: del inputs
if output_ids is not None: del output_ids
gc.collect()
print("Memory cleaned.")
return response
# --- Gradio Interface Setup ---
print("--- Setting up Gradio Interface ---")
# No need to create a separate Chatbot component beforehand
# chatbot_component = gr.Chatbot(...) # REMOVED
examples = [
["λ€μ΄λ² ν΄λ‘λ°Xλ 무μμΈκ°μ?"],
["μλ’°λ©κ±° λ°©μ μκ³Ό μμμνμ κ΄κ³λ₯Ό μ€λͺ
ν΄μ£ΌμΈμ."],
["λ₯λ¬λ λͺ¨λΈ νμ΅ κ³Όμ μ λ¨κ³λ³λ‘ μλ €μ€."],
["μ μ£Όλ μ¬ν κ³νμ μΈμ°κ³ μλλ°, 3λ° 4μΌ μΆμ² μ½μ€ μ’ μ§μ€λ?"],
]
# Let ChatInterface manage its own internal Chatbot component
# Remove the chatbot=... argument
demo = gr.ChatInterface(
fn=predict, # Link the prediction function
# chatbot=chatbot_component, # REMOVED
title="π°π· λ€μ΄λ² HyperCLOVA X SEED (0.5B) λ°λͺ¨",
description=(
f"**λͺ¨λΈ:** {MODEL_ID}\n"
f"**νκ²½:** Hugging Face λ¬΄λ£ CPU (16GB RAM)\n"
f"**μ£Όμ:** CPUμμ μ€νλλ―λ‘ μλ΅ μμ±μ λ€μ μκ°μ΄ 걸릴 μ μμ΅λλ€. (μμ
μλ£)\n"
f"μ΅λ μμ± ν ν° μλ {MAX_NEW_TOKENS}κ°λ‘ μ νλ©λλ€."
),
examples=examples,
cache_examples=False,
theme="soft",
)
# --- Application Launch ---
if __name__ == "__main__":
if load_successful:
warmup_model()
else:
print("Skipping warm-up because model loading failed.")
print("--- Launching Gradio App ---")
demo.queue().launch(
# share=True # Uncomment for public link
# server_name="0.0.0.0" # Uncomment for local network access
) |