File size: 3,742 Bytes
4304c6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
from collections.abc import Generator
import pytest
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.replicate.llm.llm import ReplicateLargeLanguageModel
def test_validate_credentials():
model = ReplicateLargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model='meta/llama-2-13b-chat',
credentials={
'replicate_api_token': 'invalid_key',
'model_version': 'f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d'
}
)
model.validate_credentials(
model='meta/llama-2-13b-chat',
credentials={
'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),
'model_version': 'f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d'
}
)
def test_invoke_model():
model = ReplicateLargeLanguageModel()
response = model.invoke(
model='meta/llama-2-13b-chat',
credentials={
'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),
'model_version': 'f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d'
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Who are you?'
)
],
model_parameters={
'temperature': 1.0,
'top_k': 2,
'top_p': 0.5,
},
stop=['How'],
stream=False,
user="abc-123"
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
def test_invoke_stream_model():
model = ReplicateLargeLanguageModel()
response = model.invoke(
model='mistralai/mixtral-8x7b-instruct-v0.1',
credentials={
'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),
'model_version': '2b56576fcfbe32fa0526897d8385dd3fb3d36ba6fd0dbe033c72886b81ade93e'
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Who are you?'
)
],
model_parameters={
'temperature': 1.0,
'top_k': 2,
'top_p': 0.5,
},
stop=['How'],
stream=True,
user="abc-123"
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
def test_get_num_tokens():
model = ReplicateLargeLanguageModel()
num_tokens = model.get_num_tokens(
model='',
credentials={
'replicate_api_token': os.environ.get('REPLICATE_API_KEY'),
'model_version': '2b56576fcfbe32fa0526897d8385dd3fb3d36ba6fd0dbe033c72886b81ade93e'
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
]
)
assert num_tokens == 14
|