khunjk commited on
Commit
abe9c0d
·
verified ·
1 Parent(s): 8aa1cf0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -0
app.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
4
+
5
+ # List of summarization models
6
+ model_names = [
7
+ "google/bigbird-pegasus-large-arxiv",
8
+ "facebook/bart-large-cnn",
9
+ "google/t5-v1_1-large",
10
+ "sshleifer/distilbart-cnn-12-6",
11
+ "allenai/led-base-16384",
12
+ "google/pegasus-xsum",
13
+ "togethercomputer/LLaMA-2-7B-32K"
14
+ ]
15
+
16
+ # Placeholder for the summarizer pipeline, tokenizer, and maximum tokens
17
+ summarizer = None
18
+ tokenizer = None
19
+ max_tokens = None
20
+
21
+ # Example text for summarization
22
+ example_text = (
23
+ "Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—"
24
+ "demonstrated by machines, as opposed to intelligence displayed by non-human animals and humans. "
25
+ "Example tasks in which AI is employed include speech recognition, computer vision, language translation, "
26
+ "autonomous vehicles, and game playing. AI research has been defined as the field of study of intelligent "
27
+ "agents, which refers to any system that perceives its environment and takes actions that maximize its "
28
+ "chance of achieving its goals."
29
+ )
30
+
31
+ # Function to load the selected model
32
+ def load_model(model_name):
33
+ global summarizer, tokenizer, max_tokens
34
+ try:
35
+ # Load the summarization pipeline with the selected model
36
+ summarizer = pipeline("summarization", model=model_name, torch_dtype=torch.float32)
37
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
38
+ config = AutoConfig.from_pretrained(model_name)
39
+
40
+ # Set a reasonable default for max_tokens if not available
41
+ max_tokens = getattr(config, 'max_position_embeddings', 1024)
42
+
43
+ return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}"
44
+ except Exception as e:
45
+ return f"Failed to load model {model_name}. Error: {str(e)}"
46
+
47
+ # Function to summarize the input text
48
+ def summarize_text(input, min_length, max_length):
49
+ if summarizer is None:
50
+ return "No model loaded!"
51
+
52
+ try:
53
+ # Tokenize the input text and check the number of tokens
54
+ input_tokens = tokenizer.encode(input, return_tensors="pt")
55
+ num_tokens = input_tokens.shape[1]
56
+ if num_tokens > max_tokens:
57
+ return f"Error: Input exceeds the max token limit of {max_tokens}."
58
+
59
+ # Ensure min/max lengths are within bounds
60
+ min_summary_length = max(10, int(num_tokens * (min_length / 100)))
61
+ max_summary_length = min(max_tokens, int(num_tokens * (max_length / 100)))
62
+
63
+ # Summarize the input text
64
+ output = summarizer(input, min_length=min_summary_length, max_length=max_summary_length, truncation=True)
65
+ return output[0]['summary_text']
66
+ except Exception as e:
67
+ return f"Summarization failed: {str(e)}"
68
+
69
+ # Gradio Interface
70
+ with gr.Blocks() as demo:
71
+ with gr.Row():
72
+ model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="sshleifer/distilbart-cnn-12-6")
73
+ load_button = gr.Button("Load Model")
74
+
75
+ load_message = gr.Textbox(label="Load Status", interactive=False)
76
+
77
+ min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
78
+ max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=20)
79
+
80
+ input_text = gr.Textbox(label="Input text to summarize", lines=6, value=example_text)
81
+ summarize_button = gr.Button("Summarize Text")
82
+ output_text = gr.Textbox(label="Summarized text", lines=4)
83
+
84
+ load_button.click(fn=load_model, inputs=model_dropdown, outputs=load_message)
85
+ summarize_button.click(fn=summarize_text, inputs=[input_text, min_length_slider, max_length_slider],
86
+ outputs=output_text)
87
+
88
+ demo.launch()