Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import os
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
import supervision as sv
|
10 |
+
from inference_sdk import (
|
11 |
+
InferenceHTTPClient,
|
12 |
+
InferenceConfiguration,
|
13 |
+
VisualisationResponseFormat
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def read_json_file(file_path: str) -> dict:
|
18 |
+
with open(file_path, 'r') as file:
|
19 |
+
return json.load(file)
|
20 |
+
|
21 |
+
|
22 |
+
def split_and_strip(text: str) -> List[str]:
|
23 |
+
return [part.strip() for part in text.split(',')]
|
24 |
+
|
25 |
+
|
26 |
+
MARKDOWN = """
|
27 |
+
# WORKFLOWS 🛠
|
28 |
+
Define complex ML pipelines in JSON and execute it, running multiple models, fusing
|
29 |
+
outputs seamlessly.
|
30 |
+
Use self-hosted Inference HTTP [container](https://inference.khulnasoft.com/inference_helpers/inference_cli/#inference-server-start)
|
31 |
+
or run against KhulnaSoft [API](https://detect.khulnasoft.com/docs)
|
32 |
+
to get results without single line of code written.
|
33 |
+
"""
|
34 |
+
|
35 |
+
# LICENSE PLATES WORKFLOW
|
36 |
+
|
37 |
+
LICENSE_PLATES_MARKDOWN = """
|
38 |
+

|
40 |
+
"""
|
41 |
+
LICENSE_PLATES_EXAMPLES = [
|
42 |
+
"https://media.khulnasoft.com/inference/license_plate_1.jpg",
|
43 |
+
"https://media.khulnasoft.com/inference/license_plate_2.jpg",
|
44 |
+
]
|
45 |
+
LICENSE_PLATES_SPECIFICATION_PATH = 'configs/license_plates.json'
|
46 |
+
LICENSE_PLATES_SPECIFICATION = read_json_file(LICENSE_PLATES_SPECIFICATION_PATH)
|
47 |
+
LICENSE_PLATES_SPECIFICATION_STRING = f"""
|
48 |
+
```json
|
49 |
+
{json.dumps(LICENSE_PLATES_SPECIFICATION, indent=4)}
|
50 |
+
```
|
51 |
+
"""
|
52 |
+
|
53 |
+
# CAR BRAND WORKFLOW
|
54 |
+
|
55 |
+
CAR_BRANDS_MARKDOWN = """
|
56 |
+

|
58 |
+
"""
|
59 |
+
CAR_BRANDS_EXAMPLES = [
|
60 |
+
["Lexus, Honda, Seat", "https://media.khulnasoft.com/inference/multiple_cars_1.jpg"],
|
61 |
+
["Volkswagen, Renault, Mercedes", "https://media.khulnasoft.com/inference/multiple_cars_2.jpg"],
|
62 |
+
]
|
63 |
+
CAR_BRANDS_SPECIFICATION_PATH = 'configs/car_brands.json'
|
64 |
+
CAR_BRANDS_SPECIFICATION = read_json_file(CAR_BRANDS_SPECIFICATION_PATH)
|
65 |
+
CAR_BRANDS_SPECIFICATION_STRING = f"""
|
66 |
+
```json
|
67 |
+
{json.dumps(CAR_BRANDS_SPECIFICATION, indent=4)}
|
68 |
+
```
|
69 |
+
"""
|
70 |
+
|
71 |
+
API_URL = os.getenv('API_URL', None)
|
72 |
+
API_KEY = os.getenv('API_KEY', None)
|
73 |
+
print("API_URL", API_URL)
|
74 |
+
|
75 |
+
if API_KEY is None or API_URL is None:
|
76 |
+
raise ValueError("API_URL and API_KEY environment variables are required")
|
77 |
+
|
78 |
+
|
79 |
+
CLIENT = InferenceHTTPClient(api_url=API_URL, api_key=API_KEY)
|
80 |
+
|
81 |
+
CLIENT.configure(InferenceConfiguration(
|
82 |
+
output_visualisation_format=VisualisationResponseFormat.NUMPY))
|
83 |
+
|
84 |
+
|
85 |
+
def annotate_image(image: np.ndarray, detections: sv.Detections) -> np.ndarray:
|
86 |
+
h, w, _ = image.shape
|
87 |
+
annotated_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
88 |
+
line_thickness = sv.calculate_dynamic_line_thickness(resolution_wh=(w, h))
|
89 |
+
text_scale = sv.calculate_dynamic_text_scale(resolution_wh=(w, h))
|
90 |
+
bounding_box_annotator = sv.BoundingBoxAnnotator(thickness=line_thickness)
|
91 |
+
label_annotator = sv.LabelAnnotator(
|
92 |
+
text_scale=text_scale,
|
93 |
+
text_thickness=line_thickness
|
94 |
+
)
|
95 |
+
annotated_image = bounding_box_annotator.annotate(
|
96 |
+
annotated_image, detections)
|
97 |
+
annotated_image = label_annotator.annotate(
|
98 |
+
annotated_image, detections)
|
99 |
+
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
100 |
+
|
101 |
+
|
102 |
+
def inference_license_plates(input_image: np.ndarray) -> np.ndarray:
|
103 |
+
result = CLIENT.infer_from_workflow(
|
104 |
+
specification=LICENSE_PLATES_SPECIFICATION["specification"],
|
105 |
+
images={"image": input_image},
|
106 |
+
)
|
107 |
+
detections = sv.Detections.from_inference(result)
|
108 |
+
if len(detections) == 0:
|
109 |
+
return input_image
|
110 |
+
|
111 |
+
detections['class_name'] = (
|
112 |
+
result["recognised_plates"]
|
113 |
+
if isinstance(result["recognised_plates"], list)
|
114 |
+
else [result["recognised_plates"]]
|
115 |
+
)
|
116 |
+
return annotate_image(input_image, detections)
|
117 |
+
|
118 |
+
|
119 |
+
def inference_car_brands(input_text: str, input_image: np.ndarray) -> np.ndarray:
|
120 |
+
classes = split_and_strip(input_text)
|
121 |
+
result = CLIENT.infer_from_workflow(
|
122 |
+
specification=CAR_BRANDS_SPECIFICATION["specification"],
|
123 |
+
images={"image": input_image},
|
124 |
+
parameters={"car_types": classes}
|
125 |
+
)
|
126 |
+
|
127 |
+
detections = sv.Detections.from_inference(result)
|
128 |
+
if len(detections) == 0:
|
129 |
+
return input_image
|
130 |
+
|
131 |
+
if len(detections) > 1:
|
132 |
+
class_ids = np.argmax(result["clip"], axis=1)
|
133 |
+
else:
|
134 |
+
class_ids = np.array([np.argmax(result["clip"], axis=0)])
|
135 |
+
|
136 |
+
detections.class_ids = class_ids
|
137 |
+
detections['class_name'] = [classes[class_id] for class_id in class_ids]
|
138 |
+
|
139 |
+
return annotate_image(input_image, detections)
|
140 |
+
|
141 |
+
|
142 |
+
with gr.Blocks() as demo:
|
143 |
+
gr.Markdown(MARKDOWN)
|
144 |
+
with gr.Tab(label="License Plates"):
|
145 |
+
gr.Markdown(LICENSE_PLATES_MARKDOWN)
|
146 |
+
with gr.Accordion("Configuration JSON", open=False):
|
147 |
+
gr.Markdown(LICENSE_PLATES_SPECIFICATION_STRING)
|
148 |
+
with gr.Row():
|
149 |
+
license_plates_input_image_component = gr.Image(
|
150 |
+
type='numpy',
|
151 |
+
label='Input Image'
|
152 |
+
)
|
153 |
+
license_plates_output_image_component = gr.Image(
|
154 |
+
type='numpy',
|
155 |
+
label='Output Image'
|
156 |
+
)
|
157 |
+
with gr.Row():
|
158 |
+
license_plates_submit_button_component = gr.Button('Submit')
|
159 |
+
gr.Examples(
|
160 |
+
fn=inference_license_plates,
|
161 |
+
examples=LICENSE_PLATES_EXAMPLES,
|
162 |
+
inputs=license_plates_input_image_component,
|
163 |
+
outputs=license_plates_output_image_component,
|
164 |
+
cache_examples=True
|
165 |
+
)
|
166 |
+
with gr.Tab(label="Car Brands"):
|
167 |
+
gr.Markdown(CAR_BRANDS_MARKDOWN)
|
168 |
+
with gr.Accordion("Configuration JSON", open=False):
|
169 |
+
gr.Markdown(CAR_BRANDS_SPECIFICATION_STRING)
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column():
|
172 |
+
car_brands_input_image_component = gr.Image(
|
173 |
+
type='numpy',
|
174 |
+
label='Input Image'
|
175 |
+
)
|
176 |
+
car_brands_input_text = gr.Textbox(
|
177 |
+
label='Car Brands',
|
178 |
+
placeholder='Enter car brands separated by comma'
|
179 |
+
)
|
180 |
+
car_brands_output_image_component = gr.Image(
|
181 |
+
type='numpy',
|
182 |
+
label='Output Image'
|
183 |
+
)
|
184 |
+
with gr.Row():
|
185 |
+
car_brands_submit_button_component = gr.Button('Submit')
|
186 |
+
gr.Examples(
|
187 |
+
fn=inference_car_brands,
|
188 |
+
examples=CAR_BRANDS_EXAMPLES,
|
189 |
+
inputs=[car_brands_input_text, car_brands_input_image_component],
|
190 |
+
outputs=car_brands_output_image_component,
|
191 |
+
cache_examples=True
|
192 |
+
)
|
193 |
+
|
194 |
+
license_plates_submit_button_component.click(
|
195 |
+
fn=inference_license_plates,
|
196 |
+
inputs=license_plates_input_image_component,
|
197 |
+
outputs=license_plates_output_image_component
|
198 |
+
)
|
199 |
+
car_brands_submit_button_component.click(
|
200 |
+
fn=inference_car_brands,
|
201 |
+
inputs=[car_brands_input_text, car_brands_input_image_component],
|
202 |
+
outputs=car_brands_output_image_component
|
203 |
+
)
|
204 |
+
|
205 |
+
demo.launch(debug=False, show_error=True)
|