File size: 5,863 Bytes
e0ca513 0b11938 e0ca513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import sys
from importlib.util import find_spec
print("Prepare demo ...")
if not os.path.exists("tcl.pth"):
print("Download TCL checkpoint ...")
os.system("wget -q https://github.com/kakaobrain/tcl/releases/download/v1.0.0/tcl.pth")
if not (find_spec("mmcv") and find_spec("mmseg")):
print("Install mmcv & mmseg ...")
os.system("mim install mmcv-full==1.6.2 mmsegmentation==0.27.0")
if not find_spec("detectron2"):
print("Install detectron ...")
os.system("pip install git+https://github.com/facebookresearch/detectron2.git")
sys.path.insert(0, "./tcl/")
print(" -- done.")
import json
from contextlib import ExitStack
import gradio as gr
import torch
from detectron2.evaluation import inference_context
from predictor import build_demo_model
model = build_demo_model()
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print(f"device: {device}")
model.to(device)
title = "TCL: Text-grounded Contrastive Learning"
description_head = """
<p style='text-align: center'> <a href='https://arxiv.org/abs/2212.00785' target='_blank'>Paper</a> | <a href='https://github.com/kakaobrain/tcl' target='_blank'>Code</a> </p>
"""
description_body = f"""
Gradio Demo for "Learning to Generate Text-grounded Mask for Open-world Semantic Segmentation from Only Image-Text Pairs".
Explore TCL's capability to perform open-world semantic segmentation **without any mask annotations**. Choose from provided examples or upload your own image. Use the query format `bg; class1; class2; ...`, with `;` as the separator, and the `bg` background query being optional (as in the third example).
This demo highlights the strengths and limitations of unsupervised open-world segmentation methods. Although TCL can handle arbitrary concepts, accurately capturing object boundaries without mask annotation remains a challenge.
"""
if device.type == "cpu":
description_body += f"\nInference takes about 10 seconds since this demo is running on the free CPU device."
description = description_head + description_body
article = """
<p style='text-align: center'><a href='https://arxiv.org/abs/2212.00785' target='_blank'>Learning to Generate Text-grounded Mask for Open-world Semantic Segmentation from Only Image-Text Pairs</a> | <a href='https://github.com/kakaobrain/tcl' target='_blank'>Github Repo</a></p>
"""
voc_examples = [
["examples/voc_59.jpg", "bg; cat; dog"],
["examples/voc_97.jpg", "bg; car"],
["examples/voc_266.jpg", "bg; dog"],
["examples/voc_294.jpg", "bg; bird"],
["examples/voc_864.jpg", "bg; cat"],
["examples/voc_1029.jpg", "bg; bus"],
]
examples = [
[
"examples/dogs.jpg",
"bg; corgi; shepherd",
],
[
"examples/dogs.jpg",
"bg; dog",
],
[
"examples/dogs.jpg",
"corgi; shepherd; lawn, trees, and fallen leaves",
],
[
"examples/banana.jpg",
"bg; banana",
],
[
"examples/banana.jpg",
"bg; red banana; green banana; yellow banana",
],
[
"examples/frodo_sam_gollum.jpg",
"bg; frodo; gollum; samwise",
],
[
"examples/frodo_sam_gollum.jpg",
"bg; rocks; monster; boys with cape"
],
[
"examples/mb_mj.jpg",
"bg; marlon brando; michael jackson",
],
]
examples = examples + voc_examples
def inference(img, query):
query = query.split(";")
query = [v.strip() for v in query]
with ExitStack() as stack:
stack.enter_context(inference_context(model))
stack.enter_context(torch.no_grad())
if device.type == "cuda":
stack.enter_context(torch.autocast("cuda"))
visualized_output = model.forward_vis(img, query)
return visualized_output
theme = gr.themes.Soft(text_size=gr.themes.sizes.text_md, primary_hue="teal")
with gr.Blocks(title=title, theme=theme) as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
gr.Markdown(description)
input_components = []
output_components = []
with gr.Row():
with gr.Column(scale=4, variant="panel"):
output_image_gr = gr.outputs.Image(label="Segmentation", type="pil").style(height=300)
output_components.append(output_image_gr)
with gr.Row():
input_gr = gr.inputs.Image(type="pil")
query_gr = gr.inputs.Textbox(default="", label="Query")
input_components.extend([input_gr, query_gr])
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit", variant="primary")
inputs = [c for c in input_components if not isinstance(c, gr.State)]
outputs = [c for c in output_components if not isinstance(c, gr.State)]
with gr.Column(scale=2):
examples_handler = gr.Examples(
examples=examples,
inputs=inputs,
outputs=outputs,
fn=inference,
cache_examples=True,
examples_per_page=7,
)
gr.Markdown(article)
submit_btn.click(
inference,
input_components,
output_components,
scroll_to_output=True,
)
clear_btn.click(
None,
[],
(input_components + output_components),
_js=f"""() => {json.dumps(
[component.cleared_value if hasattr(component, "cleared_value") else None
for component in input_components + output_components] + (
[gr.Column.update(visible=True)]
)
+ ([gr.Column.update(visible=False)])
)}
""",
)
demo.launch()
# demo.launch(server_name="0.0.0.0", server_port=9718)
|