Vintern-3B-Demo / projects /glamm /datasets /region_level_dataset.py
fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame contribute delete
11.3 kB
import copy
import random
import glob
import json
import logging
import os
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils
from xtuner.registry import BUILDER
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn
from projects.glamm.datasets.utils.utils import expand2square
from projects.glamm.datasets.utils.utils import ANSWER_LIST, REGION_QUESTIONS
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class RegionDataset(Dataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
repeats=1,
num_classes_per_sample=3,
extra_image_processor=None):
super().__init__()
self.begin_str = f"""{DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n"""
self.question_templates = REGION_QUESTIONS
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.num_classes_per_sample = num_classes_per_sample
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
reg_tokens = ['<bbox>', '<point>']
segmentation_tokens = ['[SEG]']
phrase_tokens = ['<p>', '</p>']
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.max_length = max_length
self.template_map_fn = BUILDER.build(template_map_fn)
self.text_data = self._load_annotations(data_path, image_folder)
self.image_folder = image_folder
self.image_processor = BUILDER.build(image_processor)
size = self.image_processor.crop_size
if isinstance(size, dict):
self.image_w, self.image_h = size['width'], size['height']
elif isinstance(size, int):
self.image_h, self.image_w = size, size
else:
self.image_w, self.image_h = size
self.pad_image_to_square = pad_image_to_square
self.repeats = repeats
def _load_annotations(self, data_path, image_folder=None):
self.coco = COCO(data_path)
img_ids = self.coco.getImgIds()
data_infos = []
for img_id in img_ids:
info = self.coco.loadImgs([img_id])[0]
info['filename'] = info['file_name'].split('_')[-1]
info['height'] = int(info['height'])
info['width'] = int(info['width'])
if min(info['height'], info['width']) < 32:
continue
data_infos.append(info)
return data_infos
@property
def modality_length(self):
length_list = []
for data_dict in self.text_data:
cur_len = 100
length_list.append(cur_len)
return length_list * self.repeats
def __len__(self):
return len(self.text_data) * self.repeats
def real_len(self):
return len(self.text_data)
def region_processor(self, orig_size, post_size, bboxes, labels):
orig_h, orig_w = orig_size
post_h, post_w = post_size
y_scale = post_h / orig_h
x_scale = post_w / orig_w
shuffle_ids = torch.randperm(len(labels))[:self.num_classes_per_sample]
selected_bboxes = bboxes[shuffle_ids]
# Ensure selected_bboxes is two-dimensional
if len(selected_bboxes.shape) == 1:
selected_bboxes = np.expand_dims(selected_bboxes, axis=0)
selected_labels = [labels[i] for i in shuffle_ids]
selected_bboxes[:, [0, 2]] *= x_scale
selected_bboxes[:, [1, 3]] *= y_scale
selected_bboxes = torch.tensor(
selected_bboxes, dtype=torch.float32) / post_h
return selected_bboxes, selected_labels
def _parse_annotations(self, img_info):
data_dict = {}
bboxes, captions = [], []
ann_info = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_info['id']))
image_path = os.path.join(self.image_folder, img_info['file_name'])
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(
g_image).permute(2, 0, 1).contiguous()
data_dict['g_pixel_values'] = g_pixel_values
orig_w, orig_h = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
post_h, post_w = image.shape[1:3]
data_dict['pixel_values'] = image
for ann in ann_info:
if ann.get('ignore', False) or ann['area'] <= 0 or ann['bbox'][2] < 1 or ann['bbox'][3] < 1:
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, orig_w) - max(x1, 0))
inter_h = max(0, min(y1 + h, orig_h) - max(y1, 0))
if inter_w * inter_h == 0:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if bbox:
bboxes.append(bbox)
captions.append(img_info['caption'])
if len(bboxes) == 0:
return self.__getitem__(0)
bboxes = np.array(bboxes, dtype=np.float32)
seg_map = img_info['file_name'].replace('jpg', 'png')
bboxes, captions = self.region_processor((orig_h, orig_w), (post_h, post_w), bboxes, captions)
data_dict['bboxes'] = bboxes
data_dict['captions'] = captions
data_dict['seg_map'] = seg_map
return data_dict
def create_conversation(self, captions):
questions = []
answers = []
for i, label in enumerate(captions):
question = random.choice(self.question_templates).strip().replace('<region>', f'region{i + 1} <bbox>')
questions.append(question)
answers.append(label)
conversation = []
for i, (question, answer) in enumerate(zip(questions, answers)):
if i == 0:
question = self.begin_str + question
conversation.append({'input': question, 'output': answer})
return conversation
def __getitem__(self, index):
index = index % self.real_len()
data_dict = {}
ann_info = copy.deepcopy(self.text_data[index])
ann_info = self._parse_annotations(ann_info)
data_dict['g_pixel_values'] = ann_info.pop('g_pixel_values', None)
data_dict['pixel_values'] = ann_info.pop('pixel_values')
data_dict['bboxes'] = ann_info.pop('bboxes', None)
conversation = self.create_conversation(ann_info['captions'])
data_dict['conversation'] = conversation
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = encode_fn(data_dict, tokenizer=self.tokenizer,
max_length=self.max_length, with_image_token=True)
data_dict.update(result)
return data_dict
class RefCocoGRegionDataset(RegionDataset):
pass
class VisualGenomeRegionDataset(RegionDataset):
def _parse_annotations(self, img_info):
data_dict = {}
bboxes, captions = [], []
ann_info = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_info['id']))
image_path = os.path.join(self.image_folder, img_info['file_name'])
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(
g_image).permute(2, 0, 1).contiguous()
data_dict['g_pixel_values'] = g_pixel_values
orig_w, orig_h = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
post_h, post_w = image.shape[1:3]
data_dict['pixel_values'] = image
for ann in ann_info:
if ann.get('ignore', False) or ann['area'] <= 0 or ann['bbox'][2] < 1 or ann['bbox'][3] < 1:
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, orig_w) - max(x1, 0))
inter_h = max(0, min(y1 + h, orig_h) - max(y1, 0))
if inter_w * inter_h == 0:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if bbox:
bboxes.append(bbox)
captions.append(ann['caption'].strip())
if len(bboxes) == 0:
return self.__getitem__(0)
bboxes = np.array(bboxes, dtype=np.float32)
seg_map = img_info['file_name'].replace('jpg', 'png')
bboxes, captions = self.region_processor((orig_h, orig_w), (post_h, post_w), bboxes, captions)
data_dict['bboxes'] = bboxes
data_dict['captions'] = captions
data_dict['seg_map'] = seg_map
return data_dict
if __name__ == '__main__':
from transformers import CLIPImageProcessor, AutoTokenizer
from third_parts.segment_anything.utils.transforms import ResizeLongestSide
pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
llm_name_or_path = 'lmsys/vicuna-7b-v1.5'
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path)
image_processor = dict(
type=CLIPImageProcessor.from_pretrained,
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
extra_image_processor = dict(
type=ResizeLongestSide,
target_length=1024,
)
from xtuner.utils.templates import PROMPT_TEMPLATE
prompt_template = PROMPT_TEMPLATE.vicuna
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn
dataset = VisualGenomeRegionDataset(
image_folder='./data/visual_genome/images',
image_processor=image_processor,
data_path='data/visual_genome/train.json',
tokenizer=tokenizer,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=2048,
pad_image_to_square=False,
repeats=1,
num_classes_per_sample=3,
extra_image_processor=None)
for i in range(1000):
print(dataset[i])