Vintern-1B-v3.5-Demo / projects /glamm /datasets /refcoco_segm_dataset.py
fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame contribute delete
7.38 kB
import copy
import random
import glob
import json
import logging
import os
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils
from xtuner.registry import BUILDER
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn
from projects.glamm.datasets.utils.utils import expand2square
from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from third_parts.mmdet.datasets.refcoco import RefCocoDataset
class ReferSegmDataset(RefCocoDataset):
def __init__(self,
data_root,
ann_file=None,
split_file=None,
image_processor=None,
extra_image_processor=None,
data_prefix=dict(img_path='train2014/'),
tokenizer=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
num_classes_per_sample=3):
super().__init__(
data_root=data_root,
data_prefix=data_prefix,
pipeline=None,
ann_file=ann_file,
split_file=split_file,
)
self.begin_str = f"""{DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n"""
self.question_templates = SEG_QUESTIONS
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.num_classes_per_sample = num_classes_per_sample
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
reg_tokens = ['<bbox>', '<point>']
segmentation_tokens = ['[SEG]']
phrase_tokens = ['<p>', '</p>']
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.max_length = max_length
self.template_map_fn = BUILDER.build(template_map_fn)
self.image_processor = BUILDER.build(image_processor)
size = self.image_processor.crop_size
if isinstance(size, dict):
self.image_w, self.image_h = size['width'], size['height']
self.pad_image_to_square = pad_image_to_square
@property
def modality_length(self):
import pickle
length_list = []
for idx in range(len(self)):
length_list.append(100)
# for idx in range(len(self)):
# if self.serialize_data:
# start_addr = 0 if idx == 0 else self.data_address[idx - 1].item()
# end_addr = self.data_address[idx].item()
# bytes = memoryview(
# self.data_bytes[start_addr:end_addr]) # type: ignore
# data_dict = pickle.loads(bytes)
# else:
# data_dict = copy.deepcopy(self.data_list[idx])
return length_list
def _parse_annotations(self, ann_info):
image_path = ann_info['img_path']
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(
g_image).permute(2, 0, 1).contiguous()
ann_info['g_pixel_values'] = g_pixel_values
width, height = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
ann_info['pixel_values'] = image
masks, phrases = [], []
instances, text = ann_info['instances'], ann_info['text']
index = np.random.choice(range(len(instances)), min(
len(instances), self.num_classes_per_sample))
for idx in index:
inst = instances[idx]
phrase = text[idx].lower()
phrases.append(phrase)
binary_mask = np.zeros((height, width), dtype=np.uint8)
for seg in inst["mask"]:
rles = mask_utils.frPyObjects([seg], height, width)
m = mask_utils.decode(rles)
m = m.astype(np.uint8)
binary_mask += m.squeeze()
masks.append(binary_mask)
ann_info.update({
'masks': masks,
'phrases': phrases,
})
return ann_info
def __getitem__(self, idx):
data_dict = {}
ann_info = super().__getitem__(idx)
ann_info = self._parse_annotations(ann_info)
data_dict['g_pixel_values'] = ann_info.pop('g_pixel_values')
data_dict['pixel_values'] = ann_info.pop('pixel_values')
if len(ann_info['masks']) == 0:
return self.__getitem__(0)
data_dict['masks'] = torch.from_numpy(
np.stack(ann_info['masks'], axis=0))
conversation = []
for i, phrase in enumerate(ann_info['phrases']):
question = random.choice(SEG_QUESTIONS).format(class_name=phrase)
conversation.append(
{'input': question, 'output': random.choice(ANSWER_LIST)})
data_dict['conversation'] = conversation
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = encode_fn(data_dict, tokenizer=self.tokenizer,
max_length=self.max_length, with_image_token=True)
data_dict.update(result)
return data_dict
if __name__ == '__main__':
from transformers import CLIPImageProcessor, AutoTokenizer
from third_parts.segment_anything.utils.transforms import ResizeLongestSide
pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
llm_name_or_path = 'lmsys/vicuna-7b-v1.5'
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path)
image_processor = dict(
type=CLIPImageProcessor.from_pretrained,
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
extra_image_processor = dict(
type=ResizeLongestSide,
target_length=1024,
)
from xtuner.utils.templates import PROMPT_TEMPLATE
prompt_template = PROMPT_TEMPLATE.vicuna
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn
dataset = ReferSegmDataset(
tokenizer=tokenizer,
image_processor=image_processor,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
extra_image_processor=extra_image_processor,
data_root='data/coco/',
data_prefix=dict(img_path='train2014/'),
ann_file='refcoco+/instances.json',
split_file='refcoco+/refs(unc).p',
)
for i in range(1000):
dataset[i]