import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria import gradio as gr import spaces import torch import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from PIL import Image, ExifTags import cv2 import numpy as np import torch from html2image import Html2Image import tempfile import os import uuid from scipy.ndimage import gaussian_filter from threading import Thread import re import time from PIL import Image import torch import spaces import subprocess import os from moviepy.editor import VideoFileClip, AudioFileClip subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) torch.set_default_device('cuda') IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images, target_aspect_ratio def correct_image_orientation(image_path): # Mở ảnh image = Image.open(image_path) # Kiểm tra dữ liệu Exif (nếu có) try: exif = image._getexif() if exif is not None: for tag, value in exif.items(): if ExifTags.TAGS.get(tag) == "Orientation": # Sửa hướng dựa trên Orientation if value == 3: image = image.rotate(180, expand=True) elif value == 6: image = image.rotate(-90, expand=True) elif value == 8: image = image.rotate(90, expand=True) break except Exception as e: print("Không thể xử lý Exif:", e) return image def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False): image = correct_image_orientation(image_file).convert('RGB') transform = build_transform(input_size=input_size) images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) if target_aspect_ratio: return pixel_values, target_aspect_ratio else: return pixel_values def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)): """Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất.""" last_8_layers = attention_tensor[-8:] # Lấy 8 layer cuối averaged_layer = np.mean(last_8_layers,axis=0) # Trung bình 8 layer cuối if head is None: averaged_attention = averaged_layer.mean(axis=1).squeeze() # Trung bình qua các head else: averaged_attention = averaged_layer[:, head, :, :].squeeze() # Chọn head cụ thể heat_maps = [] top_5_tokens = [] for i in range(len(averaged_attention)): # Duyệt qua các beam h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1 w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1 img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index] # Lấy index của 5 token có attention cao nhất top_5_indices = np.argsort(img_atten_score)[-5:][::-1] # Sắp xếp giảm dần top_5_values = img_atten_score[top_5_indices] # top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values))) top_5_tokens.append(list(top_5_indices + start_img_token_index)) # Reshape lại attention để vẽ heatmap img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16) img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16) img_atten_score = np.power(img_atten_score, 0.9) heat_maps.append(img_atten_score) return heat_maps, top_5_tokens def generate_next_token_table_image(model, tokenizer, response, index_focus): next_token_table = [] for layer_index in range(len(response.hidden_states[index_focus])): h_out = model.language_model.lm_head( model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0]) ) h_out = torch.softmax(h_out, -1) top_tokens = [] for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3 token_str = tokenizer.decode(token_index) prob = float(h_out[0, int(token_index)]) top_tokens.append((token_str, prob)) next_token_table.append((layer_index, top_tokens)) next_token_table = next_token_table[::-1] html_rows = "" last_layer_index = len(next_token_table) - 1 for i, (layer_index, tokens) in enumerate(next_token_table): row = f"Layer {layer_index}" # For the first column (Top 1) token_str, prob = tokens[0] # If this is the last layer in the table, make the text blue if layer_index == last_layer_index: row += f"{token_str} ({prob:.2%})" else: row += f"{token_str} ({prob:.2%})" # For the other columns, keep normal formatting for token_str, prob in tokens[1:]: row += f"{token_str} ({prob:.2%})" row += "" html_rows += row html_code = f''' {html_rows}
Top hidden tokens per layer for the Prediction
Layer ⬆️ Top 1 Top 2 Top 3
''' with tempfile.TemporaryDirectory() as tmpdir: hti = Html2Image(output_path=tmpdir) hti.browser_flags = [ "--headless=new", # ← Dùng chế độ headless mới "--disable-gpu", # ← Tắt GPU "--disable-software-rasterizer", # ← Tránh dùng fallback GPU software "--no-sandbox", # ← Tránh lỗi sandbox đa luồng ] filename = str(uuid.uuid4())+".png" # filename = 'next_token_table.png' hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000)) img_path = os.path.join(tmpdir, filename) img_cv2 = cv2.imread(img_path)[:,:,::-1] os.remove(img_path) return img_cv2 def adjust_overlay(overlay, text_img): h_o, w_o = overlay.shape[:2] h_t, w_t = text_img.shape[:2] if h_o > w_o: # Overlay là ảnh đứng # Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ new_h = h_t new_w = int(w_o * (new_h / h_o)) overlay_resized = cv2.resize(overlay, (new_w, new_h)) else: # Overlay là ảnh ngang # Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng overlay_resized = overlay.copy() # Thêm padding trắng nếu overlay có h < h_t if overlay_resized.shape[0] < h_t: pad_h = h_t - overlay_resized.shape[0] padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255 overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới # Đảm bảo overlay có cùng chiều cao với text_img if overlay_resized.shape[0] != h_t: overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t)) return overlay_resized def generate_text_image_with_html2image(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16): full_text = old_text + f"[{input_token}]"+ "→" + f"[{new_token}]" # Thay \n bằng thẻ HTML
để xuống dòng full_text = full_text.replace('\n', '
') html_code = f''' {full_text} ''' save_path = str(uuid.uuid4())+".png" hti = Html2Image(output_path='.') hti.browser_flags = [ "--headless=new", # ← Dùng chế độ headless mới "--disable-gpu", # ← Tắt GPU "--disable-software-rasterizer", # ← Tránh dùng fallback GPU software "--no-sandbox", # ← Tránh lỗi sandbox đa luồng ] hti.screenshot(html_str=html_code, save_as=save_path, size=(image_width, min_height)) text_img = cv2.imread(save_path) text_img = cv2.cvtColor(text_img, cv2.COLOR_BGR2RGB) os.remove(save_path) return text_img def extract_next_token_table_data(model, tokenizer, response, index_focus): next_token_table = [] for layer_index in range(len(response.hidden_states[index_focus])): h_out = model.language_model.lm_head( model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0]) ) h_out = torch.softmax(h_out, -1) top_tokens = [] for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3 token_str = tokenizer.decode(token_index) prob = float(h_out[0, int(token_index)]) top_tokens.append((token_str, prob)) next_token_table.append((layer_index, top_tokens)) next_token_table = next_token_table[::-1] return next_token_table def render_next_token_table_image(table_data, predict_token): import tempfile, uuid, os from html2image import Html2Image import cv2 html_rows = "" last_layer_index = len(table_data) for layer_index, tokens in table_data: row = f"Layer {layer_index+1}" token_str, prob = tokens[0] if token_str == predict_token: style = "color: red; font-weight: bold" else: style = "color: blue; font-weight: bold" row += f"{token_str} ({prob:.2%})" for token_str, prob in tokens[1:]: row += f"{token_str} ({prob:.2%})" row += "" html_rows += row html_code = f''' {html_rows}
Hidden states per Transformer layer (LLM) for Prediction
Layer ⬆️ Top 1 Top 2 Top 3
''' with tempfile.TemporaryDirectory() as tmpdir: hti = Html2Image(output_path=tmpdir) hti.browser_flags = [ "--headless=new", "--disable-gpu", "--disable-software-rasterizer", "--no-sandbox", ] filename = str(uuid.uuid4()) + ".png" hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000)) img_path = os.path.join(tmpdir, filename) img_cv2 = cv2.imread(img_path)[:, :, ::-1] os.remove(img_path) return img_cv2 model = AutoModel.from_pretrained( "khang119966/Vintern-1B-v3_5-explainableAI", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained("khang119966/Vintern-1B-v3_5-explainableAI", trust_remote_code=True, use_fast=False) @spaces.GPU def generate_video(image, prompt, max_tokens): print(image) pixel_values, target_aspect_ratio = load_image(image, max_num=6).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens= int(max_tokens), do_sample=False, num_beams = 3, repetition_penalty=2.5) response, query = model.chat(tokenizer, pixel_values, '\n'+prompt, generation_config, return_history=False, \ attention_visualize=True,last_visualize_layers=7,raw_image_path=test_image,target_aspect_ratio=target_aspect_ratio) print(response) generation_output = response raw_image_path = image return "path_to_generated_video.mp4" with gr.Blocks() as demo: gr.Markdown("### Simple VLM Demo") with gr.Row(): with gr.Column(): image = gr.Image(label="Upload your image", type = 'filepath') prompt = gr.Textbox(label="Describe your prompt", value="List all the text." ) max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=512, value=50) btn = gr.Button("Attenion Video") video = gr.Video(label="Attenion Video") btn.click(fn=generate_video, inputs=[image, prompt, max_tokens], outputs=video) if __name__ == "__main__": demo.launch()