Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoModel, AutoTokenizer | |
from PIL import Image, ExifTags | |
import cv2 | |
import numpy as np | |
import torch | |
from html2image import Html2Image | |
import tempfile | |
import os | |
import uuid | |
from scipy.ndimage import gaussian_filter | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import spaces | |
import subprocess | |
import os | |
from moviepy.editor import VideoFileClip, AudioFileClip | |
import multiprocessing | |
import imageio | |
import tqdm | |
from concurrent.futures import ProcessPoolExecutor | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
env = {'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"} | |
subprocess.run('snap install chromium', env=env, shell=True) | |
subprocess.run('wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb', env=env, shell=True) | |
subprocess.run('DEBIAN_FRONTEND=noninteractive dpkg -i google-chrome-stable_current_amd64.deb || apt-get -y -f install', env=env, shell=True) | |
subprocess.run('apt-get update -y', env=env, shell=True) | |
subprocess.run('apt-get install -y wkhtmltopdf', env=env, shell=True) | |
subprocess.run('apt-get install -y xvfb', env=env, shell=True) | |
import imgkit | |
imgkit.from_string(""" | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
</head> | |
<body> | |
<table border="1" cellspacing="0" cellpadding="8" style="font-family:'Noto Sans'; font-size:12px; border-collapse: collapse;"> | |
<tr> | |
<th colspan="4" style="text-align:center; font-size:14px; padding:10px;"> | |
Top hidden tokens per layer for the Prediction | |
</th> | |
</tr> | |
<tr> | |
<th>Layer ⬆️</th> | |
<th>Top 1</th> | |
<th>Top 2</th> | |
<th>Top 3</th> | |
</tr> | |
</table> | |
</body> | |
</html> | |
""", 'out.jpg') | |
print(Image.open('out.jpg')) | |
torch.set_default_device('cuda') | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images, target_aspect_ratio | |
def correct_image_orientation(image_path): | |
# Mở ảnh | |
image = Image.open(image_path) | |
# Kiểm tra dữ liệu Exif (nếu có) | |
try: | |
exif = image._getexif() | |
if exif is not None: | |
for tag, value in exif.items(): | |
if ExifTags.TAGS.get(tag) == "Orientation": | |
# Sửa hướng dựa trên Orientation | |
if value == 3: | |
image = image.rotate(180, expand=True) | |
elif value == 6: | |
image = image.rotate(-90, expand=True) | |
elif value == 8: | |
image = image.rotate(90, expand=True) | |
break | |
except Exception as e: | |
print("Không thể xử lý Exif:", e) | |
return image | |
def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False): | |
image = correct_image_orientation(image_file).convert('RGB') | |
transform = build_transform(input_size=input_size) | |
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
if target_aspect_ratio: | |
return pixel_values, target_aspect_ratio | |
else: | |
return pixel_values | |
def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)): | |
"""Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất.""" | |
last_8_layers = attention_tensor[-8:] # Lấy 8 layer cuối | |
averaged_layer = np.mean(last_8_layers,axis=0) # Trung bình 8 layer cuối | |
if head is None: | |
averaged_attention = averaged_layer.mean(axis=1).squeeze() # Trung bình qua các head | |
else: | |
averaged_attention = averaged_layer[:, head, :, :].squeeze() # Chọn head cụ thể | |
heat_maps = [] | |
top_5_tokens = [] | |
for i in range(len(averaged_attention)): # Duyệt qua các beam | |
h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1 | |
w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1 | |
img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index] | |
# Lấy index của 5 token có attention cao nhất | |
top_5_indices = np.argsort(img_atten_score)[-5:][::-1] # Sắp xếp giảm dần | |
top_5_values = img_atten_score[top_5_indices] | |
# top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values))) | |
top_5_tokens.append(list(top_5_indices + start_img_token_index)) | |
# Reshape lại attention để vẽ heatmap | |
img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16) | |
img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16) | |
img_atten_score = np.power(img_atten_score, 0.9) | |
heat_maps.append(img_atten_score) | |
return heat_maps, top_5_tokens | |
def generate_next_token_table_image(model, tokenizer, response, index_focus): | |
next_token_table = [] | |
for layer_index in range(len(response.hidden_states[index_focus])): | |
h_out = model.language_model.lm_head( | |
model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0]) | |
) | |
h_out = torch.softmax(h_out, -1) | |
top_tokens = [] | |
for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3 | |
token_str = tokenizer.decode(token_index) | |
prob = float(h_out[0, int(token_index)]) | |
top_tokens.append((token_str, prob)) | |
next_token_table.append((layer_index, top_tokens)) | |
next_token_table = next_token_table[::-1] | |
html_rows = "" | |
last_layer_index = len(next_token_table) - 1 | |
for i, (layer_index, tokens) in enumerate(next_token_table): | |
row = f"<tr><td style='font-weight: bold'>Layer {layer_index}</td>" | |
# For the first column (Top 1) | |
token_str, prob = tokens[0] | |
# If this is the last layer in the table, make the text blue | |
if layer_index == last_layer_index: | |
row += f"<td><span style='color: red; font-weight: bold'>{token_str}</span> ({prob:.2%})</td>" | |
else: | |
row += f"<td><span style='color: blue; font-weight: bold'>{token_str}</span> ({prob:.2%})</td>" | |
# For the other columns, keep normal formatting | |
for token_str, prob in tokens[1:]: | |
row += f"<td>{token_str} ({prob:.2%})</td>" | |
row += "</tr>" | |
html_rows += row | |
html_code = f''' | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
<style> | |
table {{ | |
font-family: 'Noto Sans'; | |
font-size: 12px; | |
border-collapse: collapse; | |
table-layout: fixed; | |
width: 100%; | |
}} | |
th, td {{ | |
border: 1px solid black; | |
padding: 8px; | |
width: 150px; | |
height: 30px; | |
overflow: hidden; | |
text-overflow: ellipsis; | |
white-space: nowrap; | |
text-align: center; | |
}} | |
th.layer {{ | |
width: 100px; | |
}} | |
th.title {{ | |
font-size: 14px; | |
padding: 10px; | |
height: auto; | |
white-space: normal; | |
overflow: visible; | |
}} | |
</style> | |
</head> | |
<body style="background-color: white;"> | |
<table> | |
<tr> | |
<th colspan="4" class="title"> | |
Top hidden tokens per layer for the Prediction | |
</th> | |
</tr> | |
<tr> | |
<th class="layer">Layer ⬆️</th> | |
<th>Top 1</th> | |
<th>Top 2</th> | |
<th>Top 3</th> | |
</tr> | |
{html_rows} | |
</table> | |
</body> | |
</html> | |
''' | |
with tempfile.TemporaryDirectory() as tmpdir: | |
hti = Html2Image(output_path=tmpdir) | |
hti.browser_flags = [ | |
"--headless=new", # ← Dùng chế độ headless mới | |
"--disable-gpu", # ← Tắt GPU | |
"--disable-software-rasterizer", # ← Tránh dùng fallback GPU software | |
"--no-sandbox", # ← Tránh lỗi sandbox đa luồng | |
] | |
filename = str(uuid.uuid4())+".png" | |
# filename = 'next_token_table.png' | |
hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000)) | |
img_path = os.path.join(tmpdir, filename) | |
img_cv2 = cv2.imread(img_path)[:,:,::-1] | |
os.remove(img_path) | |
return img_cv2 | |
def adjust_overlay(overlay, text_img): | |
h_o, w_o = overlay.shape[:2] | |
h_t, w_t = text_img.shape[:2] | |
if h_o > w_o: # Overlay là ảnh đứng | |
# Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ | |
new_h = h_t | |
new_w = int(w_o * (new_h / h_o)) | |
overlay_resized = cv2.resize(overlay, (new_w, new_h)) | |
else: # Overlay là ảnh ngang | |
# Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng | |
overlay_resized = overlay.copy() | |
# Thêm padding trắng nếu overlay có h < h_t | |
if overlay_resized.shape[0] < h_t: | |
pad_h = h_t - overlay_resized.shape[0] | |
padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255 | |
overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới | |
# Đảm bảo overlay có cùng chiều cao với text_img | |
if overlay_resized.shape[0] != h_t: | |
overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t)) | |
return overlay_resized | |
def generate_text_image_with_html2image(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16): | |
full_text = old_text + f"<span style='color:blue; font-weight:bold'>[{input_token}]</span>"+ "→" + f"<span style='color:red; font-weight:bold'>[{new_token}]</span>" | |
# Thay \n bằng thẻ HTML <br> để xuống dòng | |
full_text = full_text.replace('\n', '<br>') | |
html_code = f''' | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
</head> | |
<body style="font-family: 'DejaVu Sans', sans-serif; font-size: {font_size}px; width: {image_width}px; min-height: {min_height}px; padding: 10px; background-color: white; line-height: 1.4;"> | |
{full_text} | |
</body> | |
</html> | |
''' | |
save_path = str(uuid.uuid4())+".png" | |
hti = Html2Image(output_path='.') | |
hti.browser_flags = [ | |
"--headless=new", # ← Dùng chế độ headless mới | |
"--disable-gpu", # ← Tắt GPU | |
"--disable-software-rasterizer", # ← Tránh dùng fallback GPU software | |
"--no-sandbox", # ← Tránh lỗi sandbox đa luồng | |
] | |
hti.screenshot(html_str=html_code, save_as=save_path, size=(image_width, min_height)) | |
text_img = cv2.imread(save_path) | |
text_img = cv2.cvtColor(text_img, cv2.COLOR_BGR2RGB) | |
os.remove(save_path) | |
return text_img | |
def extract_next_token_table_data(model, tokenizer, response, index_focus): | |
next_token_table = [] | |
for layer_index in range(len(response.hidden_states[index_focus])): | |
h_out = model.language_model.lm_head( | |
model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0]) | |
) | |
h_out = torch.softmax(h_out, -1) | |
top_tokens = [] | |
for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3 | |
token_str = tokenizer.decode(token_index) | |
prob = float(h_out[0, int(token_index)]) | |
top_tokens.append((token_str, prob)) | |
next_token_table.append((layer_index, top_tokens)) | |
next_token_table = next_token_table[::-1] | |
return next_token_table | |
def render_next_token_table_image(table_data, predict_token): | |
import tempfile, uuid, os | |
from html2image import Html2Image | |
import cv2 | |
html_rows = "" | |
last_layer_index = len(table_data) | |
for layer_index, tokens in table_data: | |
row = f"<tr><td style='font-weight: bold'>Layer {layer_index+1}</td>" | |
token_str, prob = tokens[0] | |
if token_str == predict_token: | |
style = "color: red; font-weight: bold" | |
else: | |
style = "color: blue; font-weight: bold" | |
row += f"<td><span style='{style}'>{token_str}</span> ({prob:.2%})</td>" | |
for token_str, prob in tokens[1:]: | |
row += f"<td>{token_str} ({prob:.2%})</td>" | |
row += "</tr>" | |
html_rows += row | |
html_code = f''' | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
<style> | |
table {{ | |
font-family: 'Noto Sans'; | |
font-size: 12px; | |
border-collapse: collapse; | |
table-layout: fixed; | |
width: 100%; | |
}} | |
th, td {{ | |
border: 1px solid black; | |
padding: 8px; | |
width: 150px; | |
height: 30px; | |
overflow: hidden; | |
text-overflow: ellipsis; | |
white-space: nowrap; | |
text-align: center; | |
}} | |
th.layer {{ | |
width: 100px; | |
}} | |
th.title {{ | |
font-size: 14px; | |
padding: 10px; | |
height: auto; | |
white-space: normal; | |
overflow: visible; | |
}} | |
</style> | |
</head> | |
<body style="background-color: white;"> | |
<table> | |
<tr> | |
<th colspan="4" class="title"> | |
Hidden states per Transformer layer (LLM) for Prediction | |
</th> | |
</tr> | |
<tr> | |
<th class="layer">Layer ⬆️</th> | |
<th>Top 1</th> | |
<th>Top 2</th> | |
<th>Top 3</th> | |
</tr> | |
{html_rows} | |
</table> | |
</body> | |
</html> | |
''' | |
with tempfile.TemporaryDirectory() as tmpdir: | |
hti = Html2Image(output_path=tmpdir) | |
hti.browser_flags = [ | |
"--headless=new", | |
"--disable-gpu", | |
"--disable-software-rasterizer", | |
"--no-sandbox", | |
] | |
filename = str(uuid.uuid4()) + ".png" | |
hti.screenshot(html_str=html_code, save_as=filename, size=(500, 1000)) | |
img_path = os.path.join(tmpdir, filename) | |
img_cv2 = cv2.imread(img_path)[:, :, ::-1] | |
os.remove(img_path) | |
return img_cv2 | |
model = AutoModel.from_pretrained( | |
"khang119966/Vintern-1B-v3_5-explainableAI", | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
use_flash_attn=False, | |
).eval().cuda() | |
tokenizer = AutoTokenizer.from_pretrained("khang119966/Vintern-1B-v3_5-explainableAI", trust_remote_code=True, use_fast=False) | |
# Hàm bao để truyền vào multiprocessing | |
def generate_text_img_wrapper(args): | |
return generate_text_image_with_html2image(*args, image_width=500, min_height=1000) | |
def generate_hidden_img_wrapper(args): | |
return render_next_token_table_image(*args) | |
def generate_video(image, prompt, max_tokens): | |
print(image) | |
pixel_values, target_aspect_ratio = load_image(image, max_num=6) | |
pixel_values = pixel_values.to(torch.bfloat16).cuda() | |
generation_config = dict(max_new_tokens= int(max_tokens), do_sample=False, num_beams = 3, repetition_penalty=2.5) | |
response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \ | |
attention_visualize=True,last_visualize_layers=7,raw_image_path=image,target_aspect_ratio=target_aspect_ratio) | |
generation_output = response | |
raw_image_path = image | |
attentions_tensors = [] | |
for tok_ in generation_output["attentions"]: | |
attentions_tensors.append([]) | |
for lay_ in tok_ : | |
attentions_tensors[-1].append(lay_.detach().cpu().type(torch.float).numpy()) | |
attention_scores = attentions_tensors | |
query_ = tokenizer(query) | |
start_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("<img>")["input_ids"][0])[0]+1) | |
end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0]-256) | |
if end_img_token_index - start_img_token_index == 0 : | |
end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0]) | |
# Đọc ảnh gốc | |
image = cv2.imread(raw_image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Resize ảnh nhỏ hơn để giảm dung lượng GIF | |
scale_factor = 1. # Giảm 50% kích thước | |
alpha = 0.4 | |
# Lưu danh sách frames GIF | |
visualization_frames = [] | |
# Chuỗi sinh ra | |
generated_text = "" | |
frame_step = 1 | |
input_token = "" | |
params_for_text = [] | |
params_for_hidden = [] | |
heatmap_imgs = [] | |
top_visual_tokens_focus_tables = [] | |
# Lặp qua từng token | |
for index_focus in tqdm.tqdm(range(0, generation_output.sequences.shape[1], frame_step)): | |
predict_token_text = tokenizer.decode(generation_output.sequences[0, index_focus]) | |
generated_text += predict_token_text # Ghép chữ lại | |
# Tạo heatmap trung bình từ các lớp attention | |
heat_maps, top_visual_tokens_focus = visualize_attention_hiddenstate(attention_scores[index_focus], head=None, | |
start_img_token_index=start_img_token_index, end_img_token_index=end_img_token_index, | |
target_aspect_ratio=target_aspect_ratio) | |
heatmap = np.array(heat_maps[0]) | |
# Resize heatmap về kích thước ảnh gốc | |
heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC) | |
# Làm mượt heatmap | |
heatmap_smooth = gaussian_filter(heatmap, sigma=1) | |
# Chuẩn hóa heatmap về 0-255 | |
heatmap_norm = cv2.normalize(heatmap_smooth, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) | |
heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET) | |
heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB) | |
# Overlay ảnh heatmap lên ảnh gốc | |
overlay = cv2.addWeighted(image, 1 - alpha, heatmap_color, alpha, 0) | |
prev_text = generated_text[:-len(input_token)-len(predict_token_text)] + " " | |
params_for_text.append((prev_text, input_token, predict_token_text)) | |
hidden_tabel = extract_next_token_table_data(model, tokenizer, generation_output, index_focus) | |
params_for_hidden.append((hidden_tabel,predict_token_text)) | |
input_token = predict_token_text | |
heatmap_imgs.append(overlay) | |
# Dùng multiprocessing | |
# with multiprocessing.Pool(processes=20) as pool: | |
# with ProcessPoolExecutor(max_workers=20) as pool: | |
# ctx = multiprocessing.get_context() | |
# ctx.Process(target=lambda: None).daemon = False | |
# with ctx.Pool(processes=20) as pool: | |
# text_imgs = pool.map(generate_text_img_wrapper, params_for_text) | |
# hidden_imgs = pool.map(generate_hidden_img_wrapper, params_for_hidden) | |
text_imgs = [] | |
for param in tqdm.tqdm(params_for_text): | |
result = generate_text_img_wrapper(param) | |
text_imgs.append(result) | |
hidden_imgs = [] | |
for param in tqdm.tqdm(params_for_hidden): | |
result = generate_hidden_img_wrapper(param) | |
hidden_imgs.append(result) | |
for i in range(len(text_imgs)): | |
overlay = heatmap_imgs[i] | |
text_img = text_imgs[i] | |
predict_hidden_states = hidden_imgs[i] | |
overlay_adjusted = adjust_overlay(overlay, text_img) | |
predict_hidden_states = adjust_overlay(predict_hidden_states, text_img) | |
combined_image = np.hstack((overlay_adjusted, text_img, predict_hidden_states)) | |
visualization_frames.append(combined_image) | |
resized_visualization_frames = [] | |
for frame in visualization_frames: | |
frame = cv2.resize(frame,(visualization_frames[0].shape[1],visualization_frames[0].shape[0])) | |
resized_visualization_frames.append(frame) | |
# Lưu thành video MP4 bằng imageio | |
imageio.mimsave( | |
'heatmap_animation.mp4', | |
resized_visualization_frames, # dạng RGB | |
fps=5 | |
) | |
return "heatmap_animation.mp4" | |
with gr.Blocks() as demo: | |
gr.Markdown("""# 🎥 Visualizing How Multimodal Models Think | |
- This tool generates a video to **visualize how a multimodal model (image + text)** attends to different parts of an image while generating text. | |
📌 What it does: - Takes an input image and a text prompt. - Shows how the model’s attention shifts on the image for each generated token. - Helps explain the model’s behavior and decision-making. | |
🖼️ Video layout (per frame): Each frame in the video includes: 1. 🔥 **Heatmap over image**: Shows which area the model focuses on. 2. 📝 **Generated text**: With old context, current token highlighted. 3. 📊 **Token prediction table**: Shows the model’s top next-token guesses. | |
🎯 Use cases: Research explainability of vision-language models. - Debugging or interpreting model outputs. - Creating educational visualizations. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Upload your image", type = 'filepath') | |
prompt = gr.Textbox(label="Describe your prompt", value="List all the text." ) | |
max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=256, value=50) | |
btn = gr.Button("Inference") | |
video = gr.Video(label="Visualization Video") | |
btn.click(fn=generate_video, inputs=[image, prompt, max_tokens], outputs=video) | |
if __name__ == "__main__": | |
demo.launch() |