File size: 6,523 Bytes
0ea2c0e
35a9ed4
0ea2c0e
35a9ed4
0ea2c0e
 
 
 
 
 
 
 
8d20c43
45d0b80
 
 
 
 
 
 
 
0ea2c0e
 
 
 
 
 
b29876f
0ea2c0e
96bcebe
0ea2c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0b80
0ea2c0e
8d20c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0b80
 
8d20c43
0ea2c0e
45d0b80
0ea2c0e
 
45d0b80
 
 
 
 
0ea2c0e
45d0b80
dcd69bb
0ea2c0e
bdee200
19540cf
45d0b80
8d20c43
5bdf407
45d0b80
ba17d2e
6bde22d
45d0b80
 
 
 
 
0ea2c0e
45d0b80
 
5672cc2
45d0b80
 
ba17d2e
 
 
45d0b80
 
 
 
5672cc2
6d8fee1
6851a9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ExifTags
import cv2
import numpy as np
import torch
from html2image import Html2Image
import tempfile
import os
import uuid
from scipy.ndimage import gaussian_filter
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import subprocess
import os
from moviepy.editor import VideoFileClip, AudioFileClip

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

torch.set_default_device('cuda')


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images, target_aspect_ratio

def correct_image_orientation(image_path):
    # Mở ảnh
    image = Image.open(image_path)

    # Kiểm tra dữ liệu Exif (nếu có)
    try:
        exif = image._getexif()
        if exif is not None:
            for tag, value in exif.items():
                if ExifTags.TAGS.get(tag) == "Orientation":
                    # Sửa hướng dựa trên Orientation
                    if value == 3:
                        image = image.rotate(180, expand=True)
                    elif value == 6:
                        image = image.rotate(-90, expand=True)
                    elif value == 8:
                        image = image.rotate(90, expand=True)
                    break
    except Exception as e:
        print("Không thể xử lý Exif:", e)

    return image

def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False):
    image = correct_image_orientation(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    if target_aspect_ratio:
        return pixel_values, target_aspect_ratio
    else:
        return pixel_values
        
model = AutoModel.from_pretrained(
    "khang119966/Vintern-1B-v3_5-explainableAI",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("khang119966/Vintern-1B-v3_5-explainableAI", trust_remote_code=True, use_fast=False)
    
@spaces.GPU
def generate_video(image, prompt, max_tokens):
    print(image)
    pixel_values, target_aspect_ratio = load_image(image, max_num=6).to(torch.bfloat16).cuda()
    generation_config = dict(max_new_tokens= int(max_tokens), do_sample=False, num_beams = 3, repetition_penalty=2.5)
    response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \
                            attention_visualize=True,last_visualize_layers=7,raw_image_path=test_image,target_aspect_ratio=target_aspect_ratio)
    print(response)
    return "path_to_generated_video.mp4"

with gr.Blocks() as demo:
    gr.Markdown("### Simple VLM Demo")
    
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Upload your image")
            prompt = gr.Textbox(label="Describe your prompt", value="List all the text." )
            max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=512, value=50)
            btn = gr.Button("Attenion Video")
        video = gr.Video(label="Attenion Video")

    btn.click(fn=generate_video, inputs=[image, prompt, max_tokens], outputs=video)
    
if __name__ == "__main__":
    demo.launch()