Spaces:
Sleeping
Sleeping
try it with siamese image
Browse files- app.py +8 -18
- siamese.jpg +0 -0
app.py
CHANGED
@@ -9,23 +9,13 @@ def predict(img):
|
|
9 |
img = PILImage.create(img)
|
10 |
pred,pred_idx,probs = learn.predict(img)
|
11 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
description = "First trial."
|
15 |
-
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
|
16 |
-
examples = ['samed_photo_2.jpeg']
|
17 |
-
interpretation = 'default'
|
18 |
-
enable_queue = True
|
19 |
|
20 |
-
# Updated Gradio interface creation
|
21 |
-
gr.Interface(
|
22 |
-
fn=predict,
|
23 |
-
inputs=gr.Image(shape=(512, 512)),
|
24 |
-
outputs=gr.Label(num_top_classes=3),
|
25 |
-
title=title,
|
26 |
-
description=description,
|
27 |
-
article=article,
|
28 |
-
examples=examples,
|
29 |
-
interpretation=interpretation,
|
30 |
-
enable_queue=enable_queue
|
31 |
-
).launch()
|
|
|
9 |
img = PILImage.create(img)
|
10 |
pred,pred_idx,probs = learn.predict(img)
|
11 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
12 |
+
|
13 |
+
title = "Pet Breed Classifier"
|
14 |
+
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
|
15 |
+
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
|
16 |
+
examples = ['siamese.jpg']
|
17 |
+
interpretation='default'
|
18 |
+
enable_queue=True
|
19 |
|
20 |
+
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
siamese.jpg
ADDED
![]() |