""" ein notation: b - batch n - sequence nt - text sequence nw - raw wave length d - dimension """ from __future__ import annotations import torch from torch import nn import torch.nn.functional as F from x_transformers.x_transformers import RotaryEmbedding from f5_tts.model.modules import ( TimestepEmbedding, ConvNeXtV2Block, ConvPositionEmbedding, DiTBlock, AdaLayerNorm_Final, precompute_freqs_cis, get_pos_embed_indices, ) # Text embedding class TextEmbedding(nn.Module): def __init__(self, text_num_embeds, text_dim, mask_padding=True, conv_layers=0, conv_mult=2): super().__init__() self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token self.mask_padding = mask_padding # mask filler and batch padding tokens or not if conv_layers > 0: self.extra_modeling = True self.precompute_max_pos = 4096 # ~44s of 24khz audio self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) self.text_blocks = nn.Sequential( *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)] ) else: self.extra_modeling = False def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722 text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens batch, text_len = text.shape[0], text.shape[1] text = F.pad(text, (0, seq_len - text_len), value=0) if self.mask_padding: text_mask = text == 0 if drop_text: # cfg for text text = torch.zeros_like(text) text = self.text_embed(text) # b n -> b n d # possible extra modeling if self.extra_modeling: # sinus pos emb batch_start = torch.zeros((batch,), dtype=torch.long) pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) text_pos_embed = self.freqs_cis[pos_idx] text = text + text_pos_embed # convnextv2 blocks if self.mask_padding: text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0) for block in self.text_blocks: text = block(text) text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0) else: text = self.text_blocks(text) return text # noised input audio and context mixing embedding class InputEmbedding(nn.Module): def __init__(self, mel_dim, text_dim, out_dim): super().__init__() self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim) def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722 if drop_audio_cond: # cfg for cond audio cond = torch.zeros_like(cond) x = self.proj(torch.cat((x, cond, text_embed), dim=-1)) x = self.conv_pos_embed(x) + x return x # Transformer backbone using DiT blocks class DiT(nn.Module): def __init__( self, *, dim, depth=8, heads=8, dim_head=64, dropout=0.1, ff_mult=4, mel_dim=100, text_num_embeds=256, text_dim=None, text_mask_padding=True, qk_norm=None, conv_layers=0, pe_attn_head=None, long_skip_connection=False, checkpoint_activations=False, ): super().__init__() self.time_embed = TimestepEmbedding(dim) if text_dim is None: text_dim = mel_dim self.text_embed = TextEmbedding( text_num_embeds, text_dim, mask_padding=text_mask_padding, conv_layers=conv_layers ) self.text_cond, self.text_uncond = None, None # text cache self.input_embed = InputEmbedding(mel_dim, text_dim, dim) self.rotary_embed = RotaryEmbedding(dim_head) self.dim = dim self.depth = depth self.transformer_blocks = nn.ModuleList( [ DiTBlock( dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout, qk_norm=qk_norm, pe_attn_head=pe_attn_head, ) for _ in range(depth) ] ) self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None self.norm_out = AdaLayerNorm_Final(dim) # final modulation self.proj_out = nn.Linear(dim, mel_dim) self.checkpoint_activations = checkpoint_activations self.initialize_weights() def initialize_weights(self): # Zero-out AdaLN layers in DiT blocks: for block in self.transformer_blocks: nn.init.constant_(block.attn_norm.linear.weight, 0) nn.init.constant_(block.attn_norm.linear.bias, 0) # Zero-out output layers: nn.init.constant_(self.norm_out.linear.weight, 0) nn.init.constant_(self.norm_out.linear.bias, 0) nn.init.constant_(self.proj_out.weight, 0) nn.init.constant_(self.proj_out.bias, 0) def ckpt_wrapper(self, module): # https://github.com/chuanyangjin/fast-DiT/blob/main/models.py def ckpt_forward(*inputs): outputs = module(*inputs) return outputs return ckpt_forward def clear_cache(self): self.text_cond, self.text_uncond = None, None def forward( self, x: float["b n d"], # nosied input audio # noqa: F722 cond: float["b n d"], # masked cond audio # noqa: F722 text: int["b nt"], # text # noqa: F722 time: float["b"] | float[""], # time step # noqa: F821 F722 drop_audio_cond, # cfg for cond audio drop_text, # cfg for text mask: bool["b n"] | None = None, # noqa: F722 cache=False, ): batch, seq_len = x.shape[0], x.shape[1] if time.ndim == 0: time = time.repeat(batch) # t: conditioning time, text: text, x: noised audio + cond audio + text t = self.time_embed(time) if cache: if drop_text: if self.text_uncond is None: self.text_uncond = self.text_embed(text, seq_len, drop_text=True) text_embed = self.text_uncond else: if self.text_cond is None: self.text_cond = self.text_embed(text, seq_len, drop_text=False) text_embed = self.text_cond else: text_embed = self.text_embed(text, seq_len, drop_text=drop_text) x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond) rope = self.rotary_embed.forward_from_seq_len(seq_len) if self.long_skip_connection is not None: residual = x for block in self.transformer_blocks: if self.checkpoint_activations: # https://pytorch.org/docs/stable/checkpoint.html#torch.utils.checkpoint.checkpoint x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, t, mask, rope, use_reentrant=False) else: x = block(x, t, mask=mask, rope=rope) if self.long_skip_connection is not None: x = self.long_skip_connection(torch.cat((x, residual), dim=-1)) x = self.norm_out(x, t) output = self.proj_out(x) return output