File size: 5,152 Bytes
1674828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import requests
import soundfile as sf
import numpy as np
import argparse


def get_args():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument(
        "--server-url",
        type=str,
        default="localhost:8000",
        help="Address of the server",
    )

    parser.add_argument(
        "--reference-audio",
        type=str,
        default="../../infer/examples/basic/basic_ref_en.wav",
        help="Path to a single audio file. It can't be specified at the same time with --manifest-dir",
    )

    parser.add_argument(
        "--reference-text",
        type=str,
        default="Some call me nature, others call me mother nature.",
        help="",
    )

    parser.add_argument(
        "--target-text",
        type=str,
        default="I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring.",
        help="",
    )

    parser.add_argument(
        "--model-name",
        type=str,
        default="f5_tts",
        choices=["f5_tts", "spark_tts"],
        help="triton model_repo module name to request",
    )

    parser.add_argument(
        "--output-audio",
        type=str,
        default="output.wav",
        help="Path to save the output audio",
    )
    return parser.parse_args()


def prepare_request(
    samples,
    reference_text,
    target_text,
    sample_rate=16000,
    audio_save_dir: str = "./",
):
    assert len(samples.shape) == 1, "samples should be 1D"
    lengths = np.array([[len(samples)]], dtype=np.int32)
    samples = samples.reshape(1, -1).astype(np.float32)

    data = {
        "inputs": [
            {"name": "reference_wav", "shape": samples.shape, "datatype": "FP32", "data": samples.tolist()},
            {
                "name": "reference_wav_len",
                "shape": lengths.shape,
                "datatype": "INT32",
                "data": lengths.tolist(),
            },
            {"name": "reference_text", "shape": [1, 1], "datatype": "BYTES", "data": [reference_text]},
            {"name": "target_text", "shape": [1, 1], "datatype": "BYTES", "data": [target_text]},
        ]
    }

    return data


def load_audio(wav_path, target_sample_rate=16000):
    assert target_sample_rate == 16000, "hard coding in server"
    if isinstance(wav_path, dict):
        samples = wav_path["array"]
        sample_rate = wav_path["sampling_rate"]
    else:
        samples, sample_rate = sf.read(wav_path)
    if sample_rate != target_sample_rate:
        from scipy.signal import resample

        num_samples = int(len(samples) * (target_sample_rate / sample_rate))
        samples = resample(samples, num_samples)
    return samples, target_sample_rate


if __name__ == "__main__":
    args = get_args()
    server_url = args.server_url
    if not server_url.startswith(("http://", "https://")):
        server_url = f"http://{server_url}"

    url = f"{server_url}/v2/models/{args.model_name}/infer"
    samples, sr = load_audio(args.reference_audio)
    assert sr == 16000, "sample rate hardcoded in server"

    samples = np.array(samples, dtype=np.float32)
    data = prepare_request(samples, args.reference_text, args.target_text)

    rsp = requests.post(
        url, headers={"Content-Type": "application/json"}, json=data, verify=False, params={"request_id": "0"}
    )
    result = rsp.json()
    audio = result["outputs"][0]["data"]
    audio = np.array(audio, dtype=np.float32)
    sf.write(args.output_audio, audio, 24000, "PCM_16")