Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,830 Bytes
1674828 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
# 2023 Nvidia (authors: Yuekai Zhang)
# 2023 Recurrent.ai (authors: Songtao Shi)
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script supports to load dataset from huggingface and sends it to the server
for decoding, in parallel.
Usage:
num_task=2
# For offline F5-TTS
python3 client_grpc.py \
--server-addr localhost \
--model-name f5_tts \
--num-tasks $num_task \
--huggingface-dataset yuekai/seed_tts \
--split-name test_zh \
--log-dir ./log_concurrent_tasks_${num_task}
# For offline Spark-TTS-0.5B
python3 client_grpc.py \
--server-addr localhost \
--model-name spark_tts \
--num-tasks $num_task \
--huggingface-dataset yuekai/seed_tts \
--split-name wenetspeech4tts \
--log-dir ./log_concurrent_tasks_${num_task}
"""
import argparse
import asyncio
import json
import os
import time
import types
from pathlib import Path
import numpy as np
import soundfile as sf
import tritonclient
import tritonclient.grpc.aio as grpcclient
from tritonclient.utils import np_to_triton_dtype
def write_triton_stats(stats, summary_file):
with open(summary_file, "w") as summary_f:
model_stats = stats["model_stats"]
# write a note, the log is from triton_client.get_inference_statistics(), to better human readability
summary_f.write(
"The log is parsing from triton_client.get_inference_statistics(), to better human readability. \n"
)
summary_f.write("To learn more about the log, please refer to: \n")
summary_f.write("1. https://github.com/triton-inference-server/server/blob/main/docs/user_guide/metrics.md \n")
summary_f.write("2. https://github.com/triton-inference-server/server/issues/5374 \n\n")
summary_f.write(
"To better improve throughput, we always would like let requests wait in the queue for a while, and then execute them with a larger batch size. \n"
)
summary_f.write(
"However, there is a trade-off between the increased queue time and the increased batch size. \n"
)
summary_f.write(
"You may change 'max_queue_delay_microseconds' and 'preferred_batch_size' in the model configuration file to achieve this. \n"
)
summary_f.write(
"See https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#delayed-batching for more details. \n\n"
)
for model_state in model_stats:
if "last_inference" not in model_state:
continue
summary_f.write(f"model name is {model_state['name']} \n")
model_inference_stats = model_state["inference_stats"]
total_queue_time_s = int(model_inference_stats["queue"]["ns"]) / 1e9
total_infer_time_s = int(model_inference_stats["compute_infer"]["ns"]) / 1e9
total_input_time_s = int(model_inference_stats["compute_input"]["ns"]) / 1e9
total_output_time_s = int(model_inference_stats["compute_output"]["ns"]) / 1e9
summary_f.write(
f"queue time {total_queue_time_s:<5.2f} s, compute infer time {total_infer_time_s:<5.2f} s, compute input time {total_input_time_s:<5.2f} s, compute output time {total_output_time_s:<5.2f} s \n" # noqa
)
model_batch_stats = model_state["batch_stats"]
for batch in model_batch_stats:
batch_size = int(batch["batch_size"])
compute_input = batch["compute_input"]
compute_output = batch["compute_output"]
compute_infer = batch["compute_infer"]
batch_count = int(compute_infer["count"])
assert compute_infer["count"] == compute_output["count"] == compute_input["count"]
compute_infer_time_ms = int(compute_infer["ns"]) / 1e6
compute_input_time_ms = int(compute_input["ns"]) / 1e6
compute_output_time_ms = int(compute_output["ns"]) / 1e6
summary_f.write(
f"execuate inference with batch_size {batch_size:<2} total {batch_count:<5} times, total_infer_time {compute_infer_time_ms:<9.2f} ms, avg_infer_time {compute_infer_time_ms:<9.2f}/{batch_count:<5}={compute_infer_time_ms / batch_count:.2f} ms, avg_infer_time_per_sample {compute_infer_time_ms:<9.2f}/{batch_count:<5}/{batch_size}={compute_infer_time_ms / batch_count / batch_size:.2f} ms \n" # noqa
)
summary_f.write(
f"input {compute_input_time_ms:<9.2f} ms, avg {compute_input_time_ms / batch_count:.2f} ms, " # noqa
)
summary_f.write(
f"output {compute_output_time_ms:<9.2f} ms, avg {compute_output_time_ms / batch_count:.2f} ms \n" # noqa
)
def get_args():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--server-addr",
type=str,
default="localhost",
help="Address of the server",
)
parser.add_argument(
"--server-port",
type=int,
default=8001,
help="Grpc port of the triton server, default is 8001",
)
parser.add_argument(
"--reference-audio",
type=str,
default=None,
help="Path to a single audio file. It can't be specified at the same time with --manifest-dir",
)
parser.add_argument(
"--reference-text",
type=str,
default="",
help="",
)
parser.add_argument(
"--target-text",
type=str,
default="",
help="",
)
parser.add_argument(
"--huggingface-dataset",
type=str,
default="yuekai/seed_tts",
help="dataset name in huggingface dataset hub",
)
parser.add_argument(
"--split-name",
type=str,
default="wenetspeech4tts",
choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"],
help="dataset split name, default is 'test'",
)
parser.add_argument(
"--manifest-path",
type=str,
default=None,
help="Path to the manifest dir which includes wav.scp trans.txt files.",
)
parser.add_argument(
"--model-name",
type=str,
default="f5_tts",
choices=["f5_tts", "spark_tts"],
help="triton model_repo module name to request: transducer for k2, attention_rescoring for wenet offline, streaming_wenet for wenet streaming, infer_pipeline for paraformer large offline",
)
parser.add_argument(
"--num-tasks",
type=int,
default=1,
help="Number of concurrent tasks for sending",
)
parser.add_argument(
"--log-interval",
type=int,
default=5,
help="Controls how frequently we print the log.",
)
parser.add_argument(
"--compute-wer",
action="store_true",
default=False,
help="""True to compute WER.
""",
)
parser.add_argument(
"--log-dir",
type=str,
required=False,
default="./tmp",
help="log directory",
)
parser.add_argument(
"--batch-size",
type=int,
default=1,
help="Inference batch_size per request for offline mode.",
)
return parser.parse_args()
def load_audio(wav_path, target_sample_rate=16000):
assert target_sample_rate == 16000, "hard coding in server"
if isinstance(wav_path, dict):
waveform = wav_path["array"]
sample_rate = wav_path["sampling_rate"]
else:
waveform, sample_rate = sf.read(wav_path)
if sample_rate != target_sample_rate:
from scipy.signal import resample
num_samples = int(len(waveform) * (target_sample_rate / sample_rate))
waveform = resample(waveform, num_samples)
return waveform, target_sample_rate
async def send(
manifest_item_list: list,
name: str,
triton_client: tritonclient.grpc.aio.InferenceServerClient,
protocol_client: types.ModuleType,
log_interval: int,
model_name: str,
padding_duration: int = None,
audio_save_dir: str = "./",
save_sample_rate: int = 16000,
):
total_duration = 0.0
latency_data = []
task_id = int(name[5:])
print(f"manifest_item_list: {manifest_item_list}")
for i, item in enumerate(manifest_item_list):
if i % log_interval == 0:
print(f"{name}: {i}/{len(manifest_item_list)}")
waveform, sample_rate = load_audio(item["audio_filepath"], target_sample_rate=16000)
duration = len(waveform) / sample_rate
lengths = np.array([[len(waveform)]], dtype=np.int32)
reference_text, target_text = item["reference_text"], item["target_text"]
estimated_target_duration = duration / len(reference_text) * len(target_text)
if padding_duration:
# padding to nearset 10 seconds
samples = np.zeros(
(
1,
padding_duration
* sample_rate
* ((int(estimated_target_duration + duration) // padding_duration) + 1),
),
dtype=np.float32,
)
samples[0, : len(waveform)] = waveform
else:
samples = waveform
samples = samples.reshape(1, -1).astype(np.float32)
inputs = [
protocol_client.InferInput("reference_wav", samples.shape, np_to_triton_dtype(samples.dtype)),
protocol_client.InferInput("reference_wav_len", lengths.shape, np_to_triton_dtype(lengths.dtype)),
protocol_client.InferInput("reference_text", [1, 1], "BYTES"),
protocol_client.InferInput("target_text", [1, 1], "BYTES"),
]
inputs[0].set_data_from_numpy(samples)
inputs[1].set_data_from_numpy(lengths)
input_data_numpy = np.array([reference_text], dtype=object)
input_data_numpy = input_data_numpy.reshape((1, 1))
inputs[2].set_data_from_numpy(input_data_numpy)
input_data_numpy = np.array([target_text], dtype=object)
input_data_numpy = input_data_numpy.reshape((1, 1))
inputs[3].set_data_from_numpy(input_data_numpy)
outputs = [protocol_client.InferRequestedOutput("waveform")]
sequence_id = 100000000 + i + task_id * 10
start = time.time()
response = await triton_client.infer(model_name, inputs, request_id=str(sequence_id), outputs=outputs)
audio = response.as_numpy("waveform").reshape(-1)
end = time.time() - start
audio_save_path = os.path.join(audio_save_dir, f"{item['target_audio_path']}.wav")
sf.write(audio_save_path, audio, save_sample_rate, "PCM_16")
latency_data.append((end, estimated_target_duration))
total_duration += estimated_target_duration
return total_duration, latency_data
def load_manifests(manifest_path):
with open(manifest_path, "r") as f:
manifest_list = []
for line in f:
assert len(line.strip().split("|")) == 4
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
utt = Path(utt).stem
# gt_wav = os.path.join(os.path.dirname(manifest_path), "wavs", utt + ".wav")
if not os.path.isabs(prompt_wav):
prompt_wav = os.path.join(os.path.dirname(manifest_path), prompt_wav)
manifest_list.append(
{
"audio_filepath": prompt_wav,
"reference_text": prompt_text,
"target_text": gt_text,
"target_audio_path": utt,
}
)
return manifest_list
def split_data(data, k):
n = len(data)
if n < k:
print(f"Warning: the length of the input list ({n}) is less than k ({k}). Setting k to {n}.")
k = n
quotient = n // k
remainder = n % k
result = []
start = 0
for i in range(k):
if i < remainder:
end = start + quotient + 1
else:
end = start + quotient
result.append(data[start:end])
start = end
return result
async def main():
args = get_args()
url = f"{args.server_addr}:{args.server_port}"
triton_client = grpcclient.InferenceServerClient(url=url, verbose=False)
protocol_client = grpcclient
if args.reference_audio:
args.num_tasks = 1
args.log_interval = 1
manifest_item_list = [
{
"reference_text": args.reference_text,
"target_text": args.target_text,
"audio_filepath": args.reference_audio,
"target_audio_path": "test",
}
]
elif args.huggingface_dataset:
import datasets
dataset = datasets.load_dataset(
args.huggingface_dataset,
split=args.split_name,
trust_remote_code=True,
)
manifest_item_list = []
for i in range(len(dataset)):
manifest_item_list.append(
{
"audio_filepath": dataset[i]["prompt_audio"],
"reference_text": dataset[i]["prompt_text"],
"target_audio_path": dataset[i]["id"],
"target_text": dataset[i]["target_text"],
}
)
else:
manifest_item_list = load_manifests(args.manifest_path)
args.num_tasks = min(args.num_tasks, len(manifest_item_list))
manifest_item_list = split_data(manifest_item_list, args.num_tasks)
os.makedirs(args.log_dir, exist_ok=True)
tasks = []
start_time = time.time()
for i in range(args.num_tasks):
task = asyncio.create_task(
send(
manifest_item_list[i],
name=f"task-{i}",
triton_client=triton_client,
protocol_client=protocol_client,
log_interval=args.log_interval,
model_name=args.model_name,
audio_save_dir=args.log_dir,
padding_duration=1,
save_sample_rate=24000 if args.model_name == "f5_tts" else 16000,
)
)
tasks.append(task)
ans_list = await asyncio.gather(*tasks)
end_time = time.time()
elapsed = end_time - start_time
total_duration = 0.0
latency_data = []
for ans in ans_list:
total_duration += ans[0]
latency_data += ans[1]
rtf = elapsed / total_duration
s = f"RTF: {rtf:.4f}\n"
s += f"total_duration: {total_duration:.3f} seconds\n"
s += f"({total_duration / 3600:.2f} hours)\n"
s += f"processing time: {elapsed:.3f} seconds ({elapsed / 3600:.2f} hours)\n"
latency_list = [chunk_end for (chunk_end, chunk_duration) in latency_data]
latency_ms = sum(latency_list) / float(len(latency_list)) * 1000.0
latency_variance = np.var(latency_list, dtype=np.float64) * 1000.0
s += f"latency_variance: {latency_variance:.2f}\n"
s += f"latency_50_percentile_ms: {np.percentile(latency_list, 50) * 1000.0:.2f}\n"
s += f"latency_90_percentile_ms: {np.percentile(latency_list, 90) * 1000.0:.2f}\n"
s += f"latency_95_percentile_ms: {np.percentile(latency_list, 95) * 1000.0:.2f}\n"
s += f"latency_99_percentile_ms: {np.percentile(latency_list, 99) * 1000.0:.2f}\n"
s += f"average_latency_ms: {latency_ms:.2f}\n"
print(s)
if args.manifest_path:
name = Path(args.manifest_path).stem
elif args.split_name:
name = args.split_name
with open(f"{args.log_dir}/rtf-{name}.txt", "w") as f:
f.write(s)
stats = await triton_client.get_inference_statistics(model_name="", as_json=True)
write_triton_stats(stats, f"{args.log_dir}/stats_summary-{name}.txt")
metadata = await triton_client.get_model_config(model_name=args.model_name, as_json=True)
with open(f"{args.log_dir}/model_config-{name}.json", "w") as f:
json.dump(metadata, f, indent=4)
if __name__ == "__main__":
asyncio.run(main())
|