File size: 16,830 Bytes
1674828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#!/usr/bin/env python3
# Copyright      2022  Xiaomi Corp.        (authors: Fangjun Kuang)
#                2023  Nvidia              (authors: Yuekai Zhang)
#                2023  Recurrent.ai        (authors: Songtao Shi)
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script supports to load dataset from huggingface and sends it to the server
for decoding, in parallel.

Usage:
num_task=2

# For offline F5-TTS
python3 client_grpc.py \
    --server-addr localhost \
    --model-name f5_tts \
    --num-tasks $num_task \
    --huggingface-dataset yuekai/seed_tts \
    --split-name test_zh \
    --log-dir ./log_concurrent_tasks_${num_task}

# For offline Spark-TTS-0.5B
python3 client_grpc.py \
    --server-addr localhost \
    --model-name spark_tts \
    --num-tasks $num_task \
    --huggingface-dataset yuekai/seed_tts \
    --split-name wenetspeech4tts \
    --log-dir ./log_concurrent_tasks_${num_task}
"""

import argparse
import asyncio
import json

import os
import time
import types
from pathlib import Path

import numpy as np
import soundfile as sf
import tritonclient
import tritonclient.grpc.aio as grpcclient
from tritonclient.utils import np_to_triton_dtype


def write_triton_stats(stats, summary_file):
    with open(summary_file, "w") as summary_f:
        model_stats = stats["model_stats"]
        # write a note, the log is from triton_client.get_inference_statistics(), to better human readability
        summary_f.write(
            "The log is parsing from triton_client.get_inference_statistics(), to better human readability. \n"
        )
        summary_f.write("To learn more about the log, please refer to: \n")
        summary_f.write("1. https://github.com/triton-inference-server/server/blob/main/docs/user_guide/metrics.md \n")
        summary_f.write("2. https://github.com/triton-inference-server/server/issues/5374 \n\n")
        summary_f.write(
            "To better improve throughput, we always would like let requests wait in the queue for a while, and then execute them with a larger batch size. \n"
        )
        summary_f.write(
            "However, there is a trade-off between the increased queue time and the increased batch size. \n"
        )
        summary_f.write(
            "You may change 'max_queue_delay_microseconds' and 'preferred_batch_size' in the model configuration file to achieve this. \n"
        )
        summary_f.write(
            "See https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#delayed-batching for more details. \n\n"
        )
        for model_state in model_stats:
            if "last_inference" not in model_state:
                continue
            summary_f.write(f"model name is {model_state['name']} \n")
            model_inference_stats = model_state["inference_stats"]
            total_queue_time_s = int(model_inference_stats["queue"]["ns"]) / 1e9
            total_infer_time_s = int(model_inference_stats["compute_infer"]["ns"]) / 1e9
            total_input_time_s = int(model_inference_stats["compute_input"]["ns"]) / 1e9
            total_output_time_s = int(model_inference_stats["compute_output"]["ns"]) / 1e9
            summary_f.write(
                f"queue time {total_queue_time_s:<5.2f} s, compute infer time {total_infer_time_s:<5.2f} s, compute input time {total_input_time_s:<5.2f} s, compute output time {total_output_time_s:<5.2f} s \n"  # noqa
            )
            model_batch_stats = model_state["batch_stats"]
            for batch in model_batch_stats:
                batch_size = int(batch["batch_size"])
                compute_input = batch["compute_input"]
                compute_output = batch["compute_output"]
                compute_infer = batch["compute_infer"]
                batch_count = int(compute_infer["count"])
                assert compute_infer["count"] == compute_output["count"] == compute_input["count"]
                compute_infer_time_ms = int(compute_infer["ns"]) / 1e6
                compute_input_time_ms = int(compute_input["ns"]) / 1e6
                compute_output_time_ms = int(compute_output["ns"]) / 1e6
                summary_f.write(
                    f"execuate inference with batch_size {batch_size:<2} total {batch_count:<5} times, total_infer_time {compute_infer_time_ms:<9.2f} ms, avg_infer_time {compute_infer_time_ms:<9.2f}/{batch_count:<5}={compute_infer_time_ms / batch_count:.2f} ms, avg_infer_time_per_sample {compute_infer_time_ms:<9.2f}/{batch_count:<5}/{batch_size}={compute_infer_time_ms / batch_count / batch_size:.2f} ms \n"  # noqa
                )
                summary_f.write(
                    f"input {compute_input_time_ms:<9.2f} ms, avg {compute_input_time_ms / batch_count:.2f} ms, "  # noqa
                )
                summary_f.write(
                    f"output {compute_output_time_ms:<9.2f} ms, avg {compute_output_time_ms / batch_count:.2f} ms \n"  # noqa
                )


def get_args():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument(
        "--server-addr",
        type=str,
        default="localhost",
        help="Address of the server",
    )

    parser.add_argument(
        "--server-port",
        type=int,
        default=8001,
        help="Grpc port of the triton server, default is 8001",
    )

    parser.add_argument(
        "--reference-audio",
        type=str,
        default=None,
        help="Path to a single audio file. It can't be specified at the same time with --manifest-dir",
    )

    parser.add_argument(
        "--reference-text",
        type=str,
        default="",
        help="",
    )

    parser.add_argument(
        "--target-text",
        type=str,
        default="",
        help="",
    )

    parser.add_argument(
        "--huggingface-dataset",
        type=str,
        default="yuekai/seed_tts",
        help="dataset name in huggingface dataset hub",
    )

    parser.add_argument(
        "--split-name",
        type=str,
        default="wenetspeech4tts",
        choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"],
        help="dataset split name, default is 'test'",
    )

    parser.add_argument(
        "--manifest-path",
        type=str,
        default=None,
        help="Path to the manifest dir which includes wav.scp trans.txt files.",
    )

    parser.add_argument(
        "--model-name",
        type=str,
        default="f5_tts",
        choices=["f5_tts", "spark_tts"],
        help="triton model_repo module name to request: transducer for k2, attention_rescoring for wenet offline, streaming_wenet for wenet streaming, infer_pipeline for paraformer large offline",
    )

    parser.add_argument(
        "--num-tasks",
        type=int,
        default=1,
        help="Number of concurrent tasks for sending",
    )

    parser.add_argument(
        "--log-interval",
        type=int,
        default=5,
        help="Controls how frequently we print the log.",
    )

    parser.add_argument(
        "--compute-wer",
        action="store_true",
        default=False,
        help="""True to compute WER.
        """,
    )

    parser.add_argument(
        "--log-dir",
        type=str,
        required=False,
        default="./tmp",
        help="log directory",
    )

    parser.add_argument(
        "--batch-size",
        type=int,
        default=1,
        help="Inference batch_size per request for offline mode.",
    )

    return parser.parse_args()


def load_audio(wav_path, target_sample_rate=16000):
    assert target_sample_rate == 16000, "hard coding in server"
    if isinstance(wav_path, dict):
        waveform = wav_path["array"]
        sample_rate = wav_path["sampling_rate"]
    else:
        waveform, sample_rate = sf.read(wav_path)
    if sample_rate != target_sample_rate:
        from scipy.signal import resample

        num_samples = int(len(waveform) * (target_sample_rate / sample_rate))
        waveform = resample(waveform, num_samples)
    return waveform, target_sample_rate


async def send(
    manifest_item_list: list,
    name: str,
    triton_client: tritonclient.grpc.aio.InferenceServerClient,
    protocol_client: types.ModuleType,
    log_interval: int,
    model_name: str,
    padding_duration: int = None,
    audio_save_dir: str = "./",
    save_sample_rate: int = 16000,
):
    total_duration = 0.0
    latency_data = []
    task_id = int(name[5:])

    print(f"manifest_item_list: {manifest_item_list}")
    for i, item in enumerate(manifest_item_list):
        if i % log_interval == 0:
            print(f"{name}: {i}/{len(manifest_item_list)}")
        waveform, sample_rate = load_audio(item["audio_filepath"], target_sample_rate=16000)
        duration = len(waveform) / sample_rate
        lengths = np.array([[len(waveform)]], dtype=np.int32)

        reference_text, target_text = item["reference_text"], item["target_text"]

        estimated_target_duration = duration / len(reference_text) * len(target_text)

        if padding_duration:
            # padding to nearset 10 seconds
            samples = np.zeros(
                (
                    1,
                    padding_duration
                    * sample_rate
                    * ((int(estimated_target_duration + duration) // padding_duration) + 1),
                ),
                dtype=np.float32,
            )

            samples[0, : len(waveform)] = waveform
        else:
            samples = waveform

        samples = samples.reshape(1, -1).astype(np.float32)

        inputs = [
            protocol_client.InferInput("reference_wav", samples.shape, np_to_triton_dtype(samples.dtype)),
            protocol_client.InferInput("reference_wav_len", lengths.shape, np_to_triton_dtype(lengths.dtype)),
            protocol_client.InferInput("reference_text", [1, 1], "BYTES"),
            protocol_client.InferInput("target_text", [1, 1], "BYTES"),
        ]
        inputs[0].set_data_from_numpy(samples)
        inputs[1].set_data_from_numpy(lengths)

        input_data_numpy = np.array([reference_text], dtype=object)
        input_data_numpy = input_data_numpy.reshape((1, 1))
        inputs[2].set_data_from_numpy(input_data_numpy)

        input_data_numpy = np.array([target_text], dtype=object)
        input_data_numpy = input_data_numpy.reshape((1, 1))
        inputs[3].set_data_from_numpy(input_data_numpy)

        outputs = [protocol_client.InferRequestedOutput("waveform")]

        sequence_id = 100000000 + i + task_id * 10
        start = time.time()
        response = await triton_client.infer(model_name, inputs, request_id=str(sequence_id), outputs=outputs)

        audio = response.as_numpy("waveform").reshape(-1)

        end = time.time() - start

        audio_save_path = os.path.join(audio_save_dir, f"{item['target_audio_path']}.wav")
        sf.write(audio_save_path, audio, save_sample_rate, "PCM_16")

        latency_data.append((end, estimated_target_duration))
        total_duration += estimated_target_duration

    return total_duration, latency_data


def load_manifests(manifest_path):
    with open(manifest_path, "r") as f:
        manifest_list = []
        for line in f:
            assert len(line.strip().split("|")) == 4
            utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
            utt = Path(utt).stem
            # gt_wav = os.path.join(os.path.dirname(manifest_path), "wavs", utt + ".wav")
            if not os.path.isabs(prompt_wav):
                prompt_wav = os.path.join(os.path.dirname(manifest_path), prompt_wav)
            manifest_list.append(
                {
                    "audio_filepath": prompt_wav,
                    "reference_text": prompt_text,
                    "target_text": gt_text,
                    "target_audio_path": utt,
                }
            )
    return manifest_list


def split_data(data, k):
    n = len(data)
    if n < k:
        print(f"Warning: the length of the input list ({n}) is less than k ({k}). Setting k to {n}.")
        k = n

    quotient = n // k
    remainder = n % k

    result = []
    start = 0
    for i in range(k):
        if i < remainder:
            end = start + quotient + 1
        else:
            end = start + quotient

        result.append(data[start:end])
        start = end

    return result


async def main():
    args = get_args()
    url = f"{args.server_addr}:{args.server_port}"

    triton_client = grpcclient.InferenceServerClient(url=url, verbose=False)
    protocol_client = grpcclient

    if args.reference_audio:
        args.num_tasks = 1
        args.log_interval = 1
        manifest_item_list = [
            {
                "reference_text": args.reference_text,
                "target_text": args.target_text,
                "audio_filepath": args.reference_audio,
                "target_audio_path": "test",
            }
        ]
    elif args.huggingface_dataset:
        import datasets

        dataset = datasets.load_dataset(
            args.huggingface_dataset,
            split=args.split_name,
            trust_remote_code=True,
        )
        manifest_item_list = []
        for i in range(len(dataset)):
            manifest_item_list.append(
                {
                    "audio_filepath": dataset[i]["prompt_audio"],
                    "reference_text": dataset[i]["prompt_text"],
                    "target_audio_path": dataset[i]["id"],
                    "target_text": dataset[i]["target_text"],
                }
            )
    else:
        manifest_item_list = load_manifests(args.manifest_path)

    args.num_tasks = min(args.num_tasks, len(manifest_item_list))
    manifest_item_list = split_data(manifest_item_list, args.num_tasks)

    os.makedirs(args.log_dir, exist_ok=True)
    tasks = []
    start_time = time.time()
    for i in range(args.num_tasks):
        task = asyncio.create_task(
            send(
                manifest_item_list[i],
                name=f"task-{i}",
                triton_client=triton_client,
                protocol_client=protocol_client,
                log_interval=args.log_interval,
                model_name=args.model_name,
                audio_save_dir=args.log_dir,
                padding_duration=1,
                save_sample_rate=24000 if args.model_name == "f5_tts" else 16000,
            )
        )
        tasks.append(task)

    ans_list = await asyncio.gather(*tasks)

    end_time = time.time()
    elapsed = end_time - start_time

    total_duration = 0.0
    latency_data = []
    for ans in ans_list:
        total_duration += ans[0]
        latency_data += ans[1]

    rtf = elapsed / total_duration

    s = f"RTF: {rtf:.4f}\n"
    s += f"total_duration: {total_duration:.3f} seconds\n"
    s += f"({total_duration / 3600:.2f} hours)\n"
    s += f"processing time: {elapsed:.3f} seconds ({elapsed / 3600:.2f} hours)\n"

    latency_list = [chunk_end for (chunk_end, chunk_duration) in latency_data]
    latency_ms = sum(latency_list) / float(len(latency_list)) * 1000.0
    latency_variance = np.var(latency_list, dtype=np.float64) * 1000.0
    s += f"latency_variance: {latency_variance:.2f}\n"
    s += f"latency_50_percentile_ms: {np.percentile(latency_list, 50) * 1000.0:.2f}\n"
    s += f"latency_90_percentile_ms: {np.percentile(latency_list, 90) * 1000.0:.2f}\n"
    s += f"latency_95_percentile_ms: {np.percentile(latency_list, 95) * 1000.0:.2f}\n"
    s += f"latency_99_percentile_ms: {np.percentile(latency_list, 99) * 1000.0:.2f}\n"
    s += f"average_latency_ms: {latency_ms:.2f}\n"

    print(s)
    if args.manifest_path:
        name = Path(args.manifest_path).stem
    elif args.split_name:
        name = args.split_name
    with open(f"{args.log_dir}/rtf-{name}.txt", "w") as f:
        f.write(s)

    stats = await triton_client.get_inference_statistics(model_name="", as_json=True)
    write_triton_stats(stats, f"{args.log_dir}/stats_summary-{name}.txt")

    metadata = await triton_client.get_model_config(model_name=args.model_name, as_json=True)
    with open(f"{args.log_dir}/model_config-{name}.json", "w") as f:
        json.dump(metadata, f, indent=4)


if __name__ == "__main__":
    asyncio.run(main())