graphrag
Browse files- graphrag.py +5 -5
- requirements.txt +2 -2
graphrag.py
CHANGED
@@ -13,26 +13,26 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
13 |
|
14 |
llm = HuggingFaceInferenceAPI(temperature=0.2, model_name="meta-llama/Llama-3.2-1B")
|
15 |
|
16 |
-
"""
|
17 |
-
|
18 |
-
# SEE: https://huggingface.co/docs/hub/security-tokens
|
19 |
-
# We just need a token with read permissions for this demo
|
20 |
HF_TOKEN= os.environ["HF_TOKEN"]
|
21 |
|
22 |
from llama_index.llms.litellm import LiteLLM
|
23 |
llm = LiteLLM("huggingface/meta-llama/Llama-3.2-1B")
|
|
|
24 |
|
25 |
import networkx as nx
|
26 |
import matplotlib.pyplot as plt
|
27 |
import pandas as pd
|
28 |
import numpy as np
|
29 |
-
|
30 |
from langchain_experimental.graph_transformers import LLMGraphTransformer
|
31 |
from langchain.chains import GraphQAChain
|
32 |
from langchain_core.documents import Document
|
33 |
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph
|
34 |
|
|
|
35 |
|
|
|
|
|
36 |
|
37 |
customer="Low APR and great customer service. I would highly recommend if you’re looking for a great credit card company and looking to rebuild your credit. I have had my credit limit increased annually and the annual fee is very low."
|
38 |
|
|
|
13 |
|
14 |
llm = HuggingFaceInferenceAPI(temperature=0.2, model_name="meta-llama/Llama-3.2-1B")
|
15 |
|
|
|
|
|
|
|
|
|
16 |
HF_TOKEN= os.environ["HF_TOKEN"]
|
17 |
|
18 |
from llama_index.llms.litellm import LiteLLM
|
19 |
llm = LiteLLM("huggingface/meta-llama/Llama-3.2-1B")
|
20 |
+
"""
|
21 |
|
22 |
import networkx as nx
|
23 |
import matplotlib.pyplot as plt
|
24 |
import pandas as pd
|
25 |
import numpy as np
|
26 |
+
from langchain_groq import ChatGroq
|
27 |
from langchain_experimental.graph_transformers import LLMGraphTransformer
|
28 |
from langchain.chains import GraphQAChain
|
29 |
from langchain_core.documents import Document
|
30 |
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph
|
31 |
|
32 |
+
GROQ_API_KEY = os.environ.get('GROQ_API_KEY')
|
33 |
|
34 |
+
# Set up LLM and Flux client
|
35 |
+
llm = ChatGroq(temperature=0, model_name='llama-3.1-8b-instant', groq_api_key=GROQ_API_KEY)
|
36 |
|
37 |
customer="Low APR and great customer service. I would highly recommend if you’re looking for a great credit card company and looking to rebuild your credit. I have had my credit limit increased annually and the annual fee is very low."
|
38 |
|
requirements.txt
CHANGED
@@ -11,7 +11,7 @@ llama-index
|
|
11 |
faiss-cpu
|
12 |
tavily-python
|
13 |
|
14 |
-
llama-index-llms-litellm
|
15 |
|
16 |
#llama-index-llms-huggingface-api
|
17 |
#huggingface_hub[inference]
|
@@ -19,7 +19,7 @@ llama-index-llms-litellm
|
|
19 |
networkx
|
20 |
matplotlib
|
21 |
langchain-experimental
|
22 |
-
|
23 |
langchain-community
|
24 |
pandas
|
25 |
#gradio-client
|
|
|
11 |
faiss-cpu
|
12 |
tavily-python
|
13 |
|
14 |
+
#llama-index-llms-litellm
|
15 |
|
16 |
#llama-index-llms-huggingface-api
|
17 |
#huggingface_hub[inference]
|
|
|
19 |
networkx
|
20 |
matplotlib
|
21 |
langchain-experimental
|
22 |
+
langchain-groq
|
23 |
langchain-community
|
24 |
pandas
|
25 |
#gradio-client
|