added app
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import from_pretrained_keras
|
3 |
+
import tensorflow as tf
|
4 |
+
|
5 |
+
|
6 |
+
CLASSES = {
|
7 |
+
0: "airplane",
|
8 |
+
1: "automobile",
|
9 |
+
2: "bird",
|
10 |
+
3: "cat",
|
11 |
+
4: "deer",
|
12 |
+
5: "dog",
|
13 |
+
6: "frog",
|
14 |
+
7: "horse",
|
15 |
+
8: "ship",
|
16 |
+
9: "truck",
|
17 |
+
}
|
18 |
+
|
19 |
+
IMAGE_SIZE = 32
|
20 |
+
|
21 |
+
model = from_pretrained_keras("EdoAbati/cct")
|
22 |
+
|
23 |
+
|
24 |
+
def reshape_image(image):
|
25 |
+
image = tf.convert_to_tensor(image)
|
26 |
+
image.set_shape([None, None, 3])
|
27 |
+
image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE])
|
28 |
+
image = tf.expand_dims(image, axis=0)
|
29 |
+
return image
|
30 |
+
|
31 |
+
|
32 |
+
def classify_image(input_image):
|
33 |
+
input_image = reshape_image(input_image)
|
34 |
+
logits = model.predict(input_image).flatten()
|
35 |
+
predictions = tf.nn.softmax(logits)
|
36 |
+
output_labels = {CLASSES[i]: float(predictions[i]) for i in CLASSES.keys()}
|
37 |
+
return output_labels
|
38 |
+
|
39 |
+
|
40 |
+
examples = [["./bird.png"], ["./cat.png"], ["./dog.png"], ["./horse.png"]]
|
41 |
+
title = "Image Classification using Compact Convolutional Transformer (CCT)"
|
42 |
+
description = """
|
43 |
+
Upload an image or select one from the examples and ask the model to label it!
|
44 |
+
<br />
|
45 |
+
The model was trained on the <a href="https://www.cs.toronto.edu/~kriz/cifar.html" target="_blank">CIFAR-10 dataset</a>. Therefore, it is able to recognise these 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.
|
46 |
+
<br />
|
47 |
+
<br />
|
48 |
+
<p>
|
49 |
+
<b>Model: https://huggingface.co/keras-io/cct</b>
|
50 |
+
<br />
|
51 |
+
<b>Keras Example: https://keras.io/examples/vision/cct/</b>
|
52 |
+
</p>
|
53 |
+
<br />
|
54 |
+
"""
|
55 |
+
article = """
|
56 |
+
<div style="text-align: center;">
|
57 |
+
Space by <a href="https://www.linkedin.com/in/edoardoabati/" target="_blank">Edoardo Abati</a>
|
58 |
+
<br />
|
59 |
+
Keras example by <a href="https://twitter.com/RisingSayak" target="_blank">Sayak Paul</a>
|
60 |
+
</div>
|
61 |
+
"""
|
62 |
+
|
63 |
+
interface = gr.Interface(
|
64 |
+
fn=classify_image,
|
65 |
+
inputs=gr.inputs.Image(),
|
66 |
+
outputs=gr.outputs.Label(),
|
67 |
+
examples=examples,
|
68 |
+
title=title,
|
69 |
+
description=description,
|
70 |
+
article=article,
|
71 |
+
allow_flagging="never",
|
72 |
+
)
|
73 |
+
interface.launch(enable_queue=True)
|