Spaces:
Runtime error
Runtime error
File size: 1,697 Bytes
b996e0b eb3a8c0 2230bd8 eb3a8c0 8bc1b1b a6dfc58 f690a5a a6dfc58 8bc1b1b 4bb082e a6dfc58 9383bb1 b996e0b f690a5a b996e0b 8bc1b1b e3064ab f690a5a 2230bd8 09e6eb0 2230bd8 09e6eb0 f690a5a 8bc1b1b 1da77a0 a6dfc58 e3064ab 09e6eb0 1da77a0 2230bd8 1da77a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import gradio as gr
import torch
import torchaudio
import tempfile
import numpy as np
from nemo.collections.tts.models import FastPitchModel
from nemo.collections.tts.models import HifiGanModel
from nemo.collections.tts.models import MixerTTSModel
from transformers import pipeline
Audio(output["audio"], rate=output["sampling_rate"])
# spec_generator_2 = MixerTTSModel.from_pretrained("tts_en_lj_mixerttsx")
# model1 = HifiGanModel.from_pretrained(model_name="tts_en_lj_hifigan_ft_mixerttsx")
spec_generator = FastPitchModel.from_pretrained("tts_en_fastpitch_multispeaker")
spec_generator.eval()
voc_model = HifiGanModel.from_pretrained(model_name="tts_en_hifitts_hifigan_ft_fastpitch")
voc_model.eval()
pipe = pipeline("text-to-speech", model="suno/bark-small")
def greet(name):
return "Hello " + name + "!!"
def generate_tts(text: str, speaker: int = 0):
sr = 44100
# parsed = spec_generator.parse(text)
# spectrogram = spec_generator.generate_spectrogram(tokens=parsed, speaker=speaker)
# audio = voc_model.convert_spectrogram_to_audio(spec=spectrogram)
output = pipe(text)
# with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
# torchaudio.save(fp.name, audio.to('cpu'), sample_rate=sr)
# return fp.name
return (output["sampling_rate"], output["audio"])
def run():
demo = gr.Interface(
fn=generate_tts,
inputs=[gr.Textbox(value="This is a test.", label="Text to Synthesize"),
gr.Slider(0, 10, step=1, label="Speaker")],
outputs=gr.Audio(label="Output", type="numpy"),
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run() |