kedimestan's picture
Update app.py
b48c806 verified
raw
history blame
3.42 kB
import gradio as gr
import sahi
import torch
from ultralyticsplus import YOLO, render_model_output
# Download images for the demo
sahi.utils.file.download_from_url(
"https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
"highway.jpg",
)
sahi.utils.file.download_from_url(
"https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg",
"small-vehicles1.jpeg",
)
sahi.utils.file.download_from_url(
"https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/zidane.jpg",
"zidane.jpg",
)
# Define available YOLOv8 segmentation models
model_names = [
"yolov8n-seg.pt",
"yolov8s-seg.pt",
"yolov8m-seg.pt",
"yolov8l-seg.pt",
"yolov8x-seg.pt",
]
# Load the initial YOLOv8 model
current_model_name = "yolov8m-seg.pt"
model = YOLO(current_model_name)
def yolov8_inference(
image: gr.Image = None,
model_name: gr.Dropdown = None,
image_size: gr.Slider = 640,
conf_threshold: gr.Slider = 0.25,
iou_threshold: gr.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
model_name: Name of the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image and mask coordinates with labels
"""
global model
global current_model_name
# Switch model if a different one is selected
if model_name != current_model_name:
model = YOLO(model_name)
current_model_name = model_name
# Set model confidence and IOU thresholds
model.overrides["conf"] = conf_threshold
model.overrides["iou"] = iou_threshold
# Perform inference with the YOLO model
results = model.predict(image, imgsz=image_size, return_outputs=True)
masks = []
for result in results:
masks.append([result.masks, result.labels])
renders = []
for image_results in results:
render = render_model_output(
model=model, image=image, model_output=image_results
)
renders.append(render)
# Return mask coordinates and labels
return masks
# Gradio app inputs and outputs
inputs = [
gr.Image(type="filepath", label="Input Image"),
gr.Dropdown(model_names, value=current_model_name, label="Model type"),
gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.Textbox(label="Mask Coordinates and Labels")
# Example inputs for the Gradio app
examples = [
["zidane.jpg", "yolov8m-seg.pt", 640, 0.6, 0.45],
["highway.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
["small-vehicles1.jpeg", "yolov8m-seg.pt", 640, 0.25, 0.45],
]
# Create the Gradio app interface
demo_app = gr.Interface(
fn=yolov8_inference,
inputs=inputs,
outputs=outputs,
title="Ultralytics YOLOv8 Segmentation Demo",
examples=examples,
cache_examples=True,
)
# Launch the Gradio app
demo_app.launch(
debug=True, # Show detailed errors in case of issues
server_name="0.0.0.0", # Host on all IPs
server_port=7860, # Custom port for accessing the app
share=True # To make the app accessible from a URL
)