File size: 7,531 Bytes
d7f61be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497f61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import sys
sys.path.append('.')

import os
import base64
import json
from ctypes import *
import cv2
import numpy as np
from flask import Flask, request, jsonify
from veinsdk import *
from roi import *

licensePath = "license.txt"
license = ""

machineCode = getMachineCode()
print("\nmachineCode: ", machineCode.decode('utf-8'))

# Get a specific environment variable by name
license = os.environ.get("LICENSE")

# Check if the variable exists
if license is not None:
    print("Value of LICENSE:")
else:
    license = ""
    try:
        with open(licensePath, 'r') as file:
            license = file.read().strip()
    except IOError as exc:
        print("failed to open license.txt: ", exc.errno)
    print("license: ", license)
    
ret = setActivation(license.encode('utf-8'))
print("\nactivation: ", ret)

ret = initSDK()
print("init: ", ret)

app = Flask(__name__) 

def mat_to_bytes(mat):
    """
    Convert cv::Mat image data (NumPy array in Python) to raw bytes.
    """
    # Encode cv::Mat as PNG bytes
    is_success, buffer = cv2.imencode(".png", mat)
    if not is_success:
        raise ValueError("Failed to encode cv::Mat image")
    return buffer.tobytes()

@app.route('/palmvein', methods=['POST'])
def palmvein():
    result = None
    score = None
    
    file1 = request.files['file1']
    file2 = request.files['file2']
    
    try:
        image1 = cv2.imdecode(np.frombuffer(file1.read(), np.uint8), cv2.IMREAD_COLOR)
    except:
        result = "Failed to open file1"
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response

    try:
        image2 = cv2.imdecode(np.frombuffer(file2.read(), np.uint8), cv2.IMREAD_COLOR)
    except:
        result = "Failed to open file2"
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response
    
    roi1, label1 = get_roi_image(cv2.flip(image1, 1))
    roi2, label2 = get_roi_image(cv2.flip(image2, 1))

    if label1 != label2:
        result = "2 images are from the different hand"
        score = 0.0
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response
        
    if roi1 is None or roi2 is None:
        result = "\n hand detection failed !\n plesae make sure that input hand image is valid or not."
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response
    
    roi_byte1 = mat_to_bytes(roi1)
    roi_byte2 = mat_to_bytes(roi2)
    feature_array1, feature_array2 = (c_float * 1024)(), (c_float * 1024)()  # Assuming a maximum of 256 rectangles
    cnt1 = getFeature(roi_byte1, len(roi_byte1), feature_array1)
    cnt2 = getFeature(roi_byte2, len(roi_byte2), feature_array2)

    if cnt1 == 0 or cnt2 ==0:
        result = "feature extraction failed !"
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response

    score = getScore(feature_array1, cnt1, feature_array2, cnt2)
    if score >= 0.65:
        result = "Same Hand !"
        # print(f"\n 2 images are from the same hand\n similarity: {score}")
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response
    else:
        result = "Different Hand !"
        # print(f"\n 2 images are from the different hand\n similarity: {score}")
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response    

@app.route('/palmvein_base64', methods=['POST'])
def palmvein_base64():

    result = None
    score = None
    
    content = request.get_json()

    try:
        imageBase64 = content['base64_1']
        image_data = base64.b64decode(imageBase64) 
        np_array = np.frombuffer(image_data, np.uint8)
        image1 = cv2.imdecode(np_array, cv2.IMREAD_COLOR)   
    except:
        result = "Failed to open file1"
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response

    try:
        imageBase64 = content['base64_2']
        image_data = base64.b64decode(imageBase64) 
        np_array = np.frombuffer(image_data, np.uint8)
        image2 = cv2.imdecode(np_array, cv2.IMREAD_COLOR)   
    except:
        result = "Failed to open file2"
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response
    
    roi1, label1 = get_roi_image(cv2.flip(image1, 1))
    roi2, label2 = get_roi_image(cv2.flip(image2, 1))

    if label1 != label2:
        result = "2 images are from the different hand"
        score = 0.0
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response
        
    if roi1 is None or roi2 is None:
        result = "\n hand detection failed !\n plesae make sure that input hand image is valid or not."
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response
    
    roi_byte1 = mat_to_bytes(roi1)
    roi_byte2 = mat_to_bytes(roi2)
    feature_array1, feature_array2 = (c_float * 1024)(), (c_float * 1024)()  # Assuming a maximum of 256 rectangles
    cnt1 = getFeature(roi_byte1, len(roi_byte1), feature_array1)
    cnt2 = getFeature(roi_byte2, len(roi_byte2), feature_array2)

    if cnt1 == 0 or cnt2 ==0:
        result = "feature extraction failed !"
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response

    score = getScore(feature_array1, cnt1, feature_array2, cnt2)
    if score >= 0.65:
        result = "Same Hand !"
        # print(f"\n 2 images are from the same hand\n similarity: {score}")
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response
    else:
        result = "Different Hand !"
        # print(f"\n 2 images are from the different hand\n similarity: {score}")
        response = jsonify({"result": result, "score": float(score)})

        response.status_code = 200
        response.headers["Content-Type"] = "application/json; charset=utf-8"
        return response

if __name__ == '__main__':
    port = int(os.environ.get("PORT", 8080))
    app.run(host='0.0.0.0', port=port)