Spaces:
Running
Running
Upload 9 files
Browse files- .gitattributes +1 -0
- Dockerfile +45 -0
- app.py +171 -0
- demo.py +100 -0
- firesdk.py +22 -0
- libfire.so +3 -0
- libopencv.zip +3 -0
- ncnn.zip +3 -0
- requirements.txt +5 -0
- run.sh +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
libfire.so filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM openvino/ubuntu20_runtime:2024.5.0
|
2 |
+
|
3 |
+
USER root
|
4 |
+
RUN rm -rf /var/lib/apt/lists/* && apt update && apt install -y unzip \
|
5 |
+
libjpeg8 \
|
6 |
+
libwebp6 \
|
7 |
+
libpng16-16 \
|
8 |
+
libtbb2 \
|
9 |
+
libtiff5 \
|
10 |
+
libtbb-dev \
|
11 |
+
libopenexr-dev \
|
12 |
+
libgl1-mesa-glx \
|
13 |
+
libglib2.0-0 \
|
14 |
+
libgomp1
|
15 |
+
|
16 |
+
# Set up working directory
|
17 |
+
RUN mkdir -p /home/openvino/kby-ai-fire
|
18 |
+
WORKDIR /home/openvino/kby-ai-fire
|
19 |
+
|
20 |
+
# Copy shared libraries and application files
|
21 |
+
COPY ./libopencv.zip .
|
22 |
+
RUN unzip libopencv.zip
|
23 |
+
RUN cp -f libopencv/* /usr/local/lib/
|
24 |
+
RUN ldconfig
|
25 |
+
|
26 |
+
# Copy Python and application files
|
27 |
+
COPY ./libfire.so .
|
28 |
+
COPY ./app.py .
|
29 |
+
COPY ./firesdk.py .
|
30 |
+
COPY ./requirements.txt .
|
31 |
+
COPY ./license.txt .
|
32 |
+
COPY ./run.sh .
|
33 |
+
COPY ./ncnn.zip .
|
34 |
+
RUN unzip ncnn.zip
|
35 |
+
|
36 |
+
# Install Python dependencies
|
37 |
+
|
38 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
39 |
+
# RUN chmod +x ./run.sh
|
40 |
+
# USER openvino
|
41 |
+
# Set up entrypoint
|
42 |
+
CMD ["bash", "./run.sh"]
|
43 |
+
|
44 |
+
# Expose ports
|
45 |
+
EXPOSE 8080 9000
|
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('.')
|
3 |
+
|
4 |
+
import os
|
5 |
+
import base64
|
6 |
+
import json
|
7 |
+
from ctypes import *
|
8 |
+
from firesdk import *
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
from flask import Flask, request, jsonify
|
12 |
+
|
13 |
+
|
14 |
+
licensePath = "license.txt"
|
15 |
+
license = ""
|
16 |
+
|
17 |
+
machineCode = getMachineCode()
|
18 |
+
print("\nmachineCode: ", machineCode.decode('utf-8'))
|
19 |
+
|
20 |
+
try:
|
21 |
+
with open(licensePath, 'r') as file:
|
22 |
+
license = file.read().strip()
|
23 |
+
except IOError as exc:
|
24 |
+
print("failed to open license.txt: ", exc.errno)
|
25 |
+
|
26 |
+
print("\nlicense: ", license)
|
27 |
+
|
28 |
+
ret = setActivation(license.encode('utf-8'))
|
29 |
+
print("\nactivation: ", ret)
|
30 |
+
|
31 |
+
ret = initSDK()
|
32 |
+
print("init: ", ret)
|
33 |
+
|
34 |
+
app = Flask(__name__)
|
35 |
+
|
36 |
+
def mat_to_bytes(mat):
|
37 |
+
"""
|
38 |
+
Convert cv::Mat image data (NumPy array in Python) to raw bytes.
|
39 |
+
"""
|
40 |
+
# Encode cv::Mat as PNG bytes
|
41 |
+
is_success, buffer = cv2.imencode(".png", mat)
|
42 |
+
if not is_success:
|
43 |
+
raise ValueError("Failed to encode cv::Mat image")
|
44 |
+
return buffer.tobytes()
|
45 |
+
|
46 |
+
@app.route('/fire', methods=['POST'])
|
47 |
+
def fire():
|
48 |
+
result = "None"
|
49 |
+
object_name = {}
|
50 |
+
box = {}
|
51 |
+
pro = {}
|
52 |
+
|
53 |
+
file = request.files['file']
|
54 |
+
|
55 |
+
try:
|
56 |
+
image = cv2.imdecode(np.frombuffer(file.read(), np.uint8), cv2.IMREAD_COLOR)
|
57 |
+
# image = cv2.resize(image, (1024, 640))
|
58 |
+
except:
|
59 |
+
result = "Failed to open file"
|
60 |
+
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
|
61 |
+
|
62 |
+
response.status_code = 200
|
63 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
64 |
+
return response
|
65 |
+
|
66 |
+
img_byte = mat_to_bytes(image)
|
67 |
+
|
68 |
+
box_array = (c_int * 1024)() # Assuming a maximum of 256 rectangles
|
69 |
+
score_array = (c_float * 1024)() # Assuming a maximum of 256 rectangles
|
70 |
+
label_array = (c_int * 1024)()
|
71 |
+
|
72 |
+
cnt = getFireDetection(img_byte, len(img_byte), label_array, box_array, score_array)
|
73 |
+
|
74 |
+
rectangles = [
|
75 |
+
(box_array[i * 4], box_array[i * 4 + 1], box_array[i * 4 + 2], box_array[i * 4 + 3])
|
76 |
+
for i in range(cnt)]
|
77 |
+
scores = [score_array[i] for i in range(cnt)]
|
78 |
+
labels = [label_array[i] for i in range(cnt)]
|
79 |
+
|
80 |
+
# print(f"detection number: {cnt}, box: {rectangles}, labels: {labels}, scores: {scores} \n")
|
81 |
+
|
82 |
+
if cnt == 0:
|
83 |
+
result = "Nothing Detected !"
|
84 |
+
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
|
85 |
+
|
86 |
+
response.status_code = 200
|
87 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
88 |
+
return response
|
89 |
+
|
90 |
+
result = "Fire or Smoke Detected !"
|
91 |
+
for i in range(cnt):
|
92 |
+
if labels[i] == 0:
|
93 |
+
object_name[f"id {i + 1}"] = "fire"
|
94 |
+
else:
|
95 |
+
object_name[f"id {i + 1}"] = "smoke"
|
96 |
+
box[f"id {i + 1}"] = rectangles[i]
|
97 |
+
pro[f"id {i + 1}"] = scores[i]
|
98 |
+
|
99 |
+
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
|
100 |
+
|
101 |
+
response.status_code = 200
|
102 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
103 |
+
return response
|
104 |
+
|
105 |
+
@app.route('/fire_base64', methods=['POST'])
|
106 |
+
def fire_base64():
|
107 |
+
|
108 |
+
result = "None"
|
109 |
+
object_name = {}
|
110 |
+
box = {}
|
111 |
+
pro = {}
|
112 |
+
|
113 |
+
content = request.get_json()
|
114 |
+
|
115 |
+
try:
|
116 |
+
imageBase64 = content['base64']
|
117 |
+
image_data = base64.b64decode(imageBase64)
|
118 |
+
np_array = np.frombuffer(image_data, np.uint8)
|
119 |
+
image = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
|
120 |
+
# image = cv2.resize(image, (1024, 640))
|
121 |
+
except:
|
122 |
+
result = "Failed to open file1"
|
123 |
+
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
|
124 |
+
|
125 |
+
response.status_code = 200
|
126 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
127 |
+
return response
|
128 |
+
|
129 |
+
|
130 |
+
img_byte = mat_to_bytes(image)
|
131 |
+
|
132 |
+
box_array = (c_int * 1024)() # Assuming a maximum of 256 rectangles
|
133 |
+
score_array = (c_float * 1024)() # Assuming a maximum of 256 rectangles
|
134 |
+
label_array = (c_int * 1024)()
|
135 |
+
|
136 |
+
cnt = getFireDetection(img_byte, len(img_byte), label_array, box_array, score_array)
|
137 |
+
|
138 |
+
rectangles = [
|
139 |
+
(box_array[i * 4], box_array[i * 4 + 1], box_array[i * 4 + 2], box_array[i * 4 + 3])
|
140 |
+
for i in range(cnt)]
|
141 |
+
scores = [score_array[i] for i in range(cnt)]
|
142 |
+
labels = [label_array[i] for i in range(cnt)]
|
143 |
+
|
144 |
+
# print(f"detection number: {cnt}, box: {rectangles}, labels: {labels}, scores: {scores} \n")
|
145 |
+
|
146 |
+
if cnt == 0:
|
147 |
+
result = "Nothing Detected !"
|
148 |
+
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
|
149 |
+
|
150 |
+
response.status_code = 200
|
151 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
152 |
+
return response
|
153 |
+
|
154 |
+
result = "Fire or Smoke Detected !"
|
155 |
+
for i in range(cnt):
|
156 |
+
if labels[i] == 0:
|
157 |
+
object_name[f"id {i + 1}"] = "fire"
|
158 |
+
else:
|
159 |
+
object_name[f"id {i + 1}"] = "smoke"
|
160 |
+
box[f"id {i + 1}"] = rectangles[i]
|
161 |
+
pro[f"id {i + 1}"] = scores[i]
|
162 |
+
|
163 |
+
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
|
164 |
+
|
165 |
+
response.status_code = 200
|
166 |
+
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
167 |
+
return response
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
port = int(os.environ.get("PORT", 8080))
|
171 |
+
app.run(host='0.0.0.0', port=port)
|
demo.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
alpr_count = 0
|
9 |
+
def plot_one_box(x, img, color=None, label=None, score=None, line_thickness=3):
|
10 |
+
# Plots one bounding box on image img
|
11 |
+
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
12 |
+
color = color
|
13 |
+
c1, c2 = (int(x[0]), int(x[1])), (int(x[2])+int(x[0]), int(x[3])+int(x[1]))
|
14 |
+
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
15 |
+
if label:
|
16 |
+
tf = max(tl - 1, 1) # font thickness
|
17 |
+
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
18 |
+
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
19 |
+
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
20 |
+
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [0, 0, 0], thickness=tf, lineType=cv2.LINE_AA)
|
21 |
+
|
22 |
+
pro = f"{score:.3f}"
|
23 |
+
t_size = cv2.getTextSize(pro, 0, fontScale=tl / 3, thickness=tf)[0]
|
24 |
+
c1 = c2
|
25 |
+
c2 = c1[0] + t_size[0], c1[1] + t_size[1] + 3
|
26 |
+
cv2.rectangle(img, c1, c2, [0, 255, 255], -1, cv2.LINE_AA) # filled
|
27 |
+
cv2.putText(img, pro, (c1[0], c2[1] - 2), 0, tl / 3, [0, 0, 0], thickness=tf, lineType=cv2.LINE_AA)
|
28 |
+
return img
|
29 |
+
|
30 |
+
def fire(frame):
|
31 |
+
global fire_count
|
32 |
+
|
33 |
+
fire_count = fire_count + 1
|
34 |
+
print("fire_count", fire_count)
|
35 |
+
url = "http://127.0.0.1:8080/fire"
|
36 |
+
file = {'file': open(frame, 'rb')}
|
37 |
+
|
38 |
+
r = requests.post(url=url, files=file)
|
39 |
+
|
40 |
+
fire_output = None
|
41 |
+
result = r.json().get('result')
|
42 |
+
object_name = r.json().get('class')
|
43 |
+
box = r.json().get('coordinate')
|
44 |
+
pro = r.json().get('score')
|
45 |
+
# print("\n number: ", plate_number)
|
46 |
+
# print("\n coordinate: ", box)
|
47 |
+
# print("\n score: ", pro)
|
48 |
+
try:
|
49 |
+
image = cv2.imread(frame, cv2.IMREAD_COLOR)
|
50 |
+
if image is None:
|
51 |
+
print('image is null')
|
52 |
+
sys.exit()
|
53 |
+
# image = cv2.resize(image, (1024, 640))
|
54 |
+
for obj_name in object_name:
|
55 |
+
# print(plate_number)
|
56 |
+
image = plot_one_box(box[obj_name], image, label=object_name[obj_name], score=pro[obj_name], color=[0, 255, 0], line_thickness=1)
|
57 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
58 |
+
|
59 |
+
fire_output = image.copy()
|
60 |
+
|
61 |
+
except:
|
62 |
+
pass
|
63 |
+
|
64 |
+
return fire_output
|
65 |
+
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown(
|
68 |
+
"""
|
69 |
+
# KBY-AI Fire/Smoke Detection SDK Demo
|
70 |
+
We offer SDKs for face recognition, liveness detection(anti-spoofing), ID card recognition and ID document liveness detection.
|
71 |
+
We also specialize in providing outsourcing services with a variety of technical stacks like AI(Computer Vision/Machine Learning), mobile apps, and web apps.
|
72 |
+
|
73 |
+
##### KYC Verification Demo - https://github.com/kby-ai/KYC-Verification-Demo-Android
|
74 |
+
##### ID Capture Web Demo - https://cap.kby-ai.com
|
75 |
+
"""
|
76 |
+
)
|
77 |
+
|
78 |
+
with gr.TabItem("Fire/Smoke Detection"):
|
79 |
+
gr.Markdown(
|
80 |
+
"""
|
81 |
+
##### Docker Hub - https://hub.docker.com/r/kbyai/fire-smoke-detection
|
82 |
+
```bash
|
83 |
+
sudo docker pull kbyai/fire-smoke-detection:latest
|
84 |
+
sudo docker run -v ./license.txt:/home/openvino/kby-ai-fire/license.txt -p 8081:8080 -p 9001:9000 kbyai/fire-smoke-detection:latest
|
85 |
+
```
|
86 |
+
"""
|
87 |
+
)
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column():
|
90 |
+
alpr_image_input = gr.Image(type='filepath', height=300)
|
91 |
+
gr.Examples(['fire_examples/test1.jpg', 'fire_examples/test2.jpg', 'fire_examples/test3.jpg', 'fire_examples/test4.jpg'],
|
92 |
+
inputs=alpr_image_input)
|
93 |
+
fire_confirmation_button = gr.Button("Confirm")
|
94 |
+
with gr.Column():
|
95 |
+
fire_output = gr.Image(type="numpy")
|
96 |
+
|
97 |
+
fire_confirmation_button.click(fire, inputs=alpr_image_input, outputs=fire_output)
|
98 |
+
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fweb.kby-ai.com%2F"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fweb.kby-ai.com%2F&label=VISITORS&countColor=%23263759" /></a>')
|
99 |
+
|
100 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
firesdk.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from ctypes import *
|
4 |
+
|
5 |
+
libPath = os.path.abspath(os.path.dirname(__file__)) + '/libfire.so'
|
6 |
+
firesdk = cdll.LoadLibrary(libPath)
|
7 |
+
|
8 |
+
getMachineCode = firesdk.getMachineCode
|
9 |
+
getMachineCode.argtypes = []
|
10 |
+
getMachineCode.restype = c_char_p
|
11 |
+
|
12 |
+
setActivation = firesdk.setActivation
|
13 |
+
setActivation.argtypes = [c_char_p]
|
14 |
+
setActivation.restype = c_int32
|
15 |
+
|
16 |
+
initSDK = firesdk.initSDK
|
17 |
+
initSDK.argtypes = []
|
18 |
+
initSDK.restype = c_int32
|
19 |
+
|
20 |
+
getFireDetection = firesdk.get_fire_using_bytes
|
21 |
+
getFireDetection.argtypes = [c_char_p, c_ulong, POINTER(c_int), POINTER(c_int), POINTER(c_float)]
|
22 |
+
getFireDetection.restype = c_int32
|
libfire.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86958ed0abbfb8e6f6528cf83691dad30d7e9e37ab57a92dc387782a9762c89e
|
3 |
+
size 8492591
|
libopencv.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8845c1412c45c484e054235269944e2ac43c90a148ce3444215fe52049cf7479
|
3 |
+
size 61014815
|
ncnn.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a702183c67f189f3a29c32186ab99e35b2df47a7f61c74aef2c600e7386059b
|
3 |
+
size 32239397
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
flask-cors
|
3 |
+
gradio==3.50.2
|
4 |
+
datadog_api_client
|
5 |
+
opencv-python
|
run.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# cd /home/openvino/kby-ai-alpr
|
2 |
+
exec python3 demo.py &
|
3 |
+
exec python3 app.py
|