DontFreakOut commited on
Commit
19a2ea8
·
1 Parent(s): 4f6bcb0

adding program to app.py

Browse files
Files changed (6) hide show
  1. app.py +111 -4
  2. chinese-american.wav +3 -0
  3. indian.wav +3 -0
  4. mexican.wav +3 -0
  5. nigerian.wav +3 -0
  6. vietnamese.wav +3 -0
app.py CHANGED
@@ -1,7 +1,114 @@
1
  import gradio as gr
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+ import torch
4
+ import torchaudio
5
+ from speechbrain.pretrained import EncoderClassifier
6
 
7
+ # Set up pipe for whisper asr
8
+ asr_pipe = pipeline(
9
+ "automatic-speech-recognition",
10
+ model="openai/whisper-base.en",
11
+ torch_dtype=torch.float32,
12
+ device="cpu",
13
+ )
14
 
15
+ # Set up pipe for 2 phonemic transcription models
16
+ american_phoneme_pipe = pipeline("automatic-speech-recognition", model="vitouphy/wav2vec2-xls-r-300m-timit-phoneme")
17
+ esl_phoneme_pipe = pipeline("automatic-speech-recognition", model="mrrubino/wav2vec2-large-xlsr-53-l2-arctic-phoneme")
18
+
19
+ # Set up pipe for 2 accent classification models
20
+ classifier = EncoderClassifier.from_hparams(source="Jzuluaga/accent-id-commonaccent_ecapa", savedir="pretrained_models/accent-id-commonaccent_ecapa")
21
+
22
+ def native_accent_classifier(file):
23
+ out_prob, score, index, text_lab = classifier.classify_file(file)
24
+ return [{'accent': text_lab[0], 'score': round(score[0],2)}]
25
+
26
+ def esl_accent_classifier(file):
27
+ esl_accent_pipe = pipeline(
28
+ "audio-classification",
29
+ model="kaysrubio/accent-id-distilhubert-finetuned-l2-arctic2"
30
+ )
31
+ audio, sr = torchaudio.load(file) # Load audio
32
+ audio = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000)(audio)
33
+ audio = audio.squeeze().numpy()
34
+ result = esl_accent_pipe(audio, top_k=6)
35
+ return [{'accent': result[0]['label'], 'score': round(result[0]['score'],2)}]
36
+
37
+ def transcribe_and_classify_speech(audio):
38
+ try:
39
+ asr_output = asr_pipe(
40
+ audio,
41
+ max_new_tokens=256,
42
+ chunk_length_s=30,
43
+ batch_size=8,
44
+ )["text"]
45
+ except Exception as e:
46
+ print(f"An error occurred with openai/whisper-base.en: {e}")
47
+ asr_output = "Error, make sure your file is in mono format"
48
+
49
+ try:
50
+ american_phoneme_output = american_phoneme_pipe(audio)['text']
51
+ except Exception as e:
52
+ print(f"An error occurred with wav2vec2-xls-r-300m-timit-phoneme: {e}")
53
+ american_phoneme_output = "Error, make sure your file is in mono format"
54
+
55
+ try:
56
+ esl_phoneme_output = esl_phoneme_pipe(audio)['text']
57
+ except Exception as e:
58
+ print(f"An error occurred with mrrubino/wav2vec2-large-xlsr-53-l2-arctic-phoneme: {e}")
59
+ esl_phoneme_output = "Error"
60
+
61
+ try:
62
+ native_accent_output = native_accent_classifier(audio)
63
+ except Exception as e:
64
+ print(f"An error occurred with Jzuluaga/accent-id-commonaccent_ecapa: {e}")
65
+ native_accent_output = [{'accent': 'Unknown-please upload single channel audio'}, {'score': .0}]
66
+
67
+ try:
68
+ esl_accent_output = esl_accent_classifier(audio)
69
+ except Exception as e:
70
+ print(f"An error occurred with kaysrubio/accent-id-distilhubert-finetuned-l2-arctic2: {e}")
71
+ esl_accent_output = [{'accent': 'Unknown-please upload single channel audio'}, {'score': .0}]
72
+
73
+ output = [
74
+ {'transcription': asr_output},
75
+ {'phonemes_native_eng': american_phoneme_output},
76
+ {'phonemes_eng_second_lang': esl_phoneme_output},
77
+ {'native_eng_country': native_accent_output},
78
+ {'first_lang_if_not_eng': esl_accent_output}
79
+ ]
80
+ return output
81
+
82
+ demo = gr.Blocks()
83
+
84
+ examples = [['chinese-american.wav'], ['mexican.wav'], ['vietnamese.wav'], ['indian.wav'], ['nigerian.wav']]
85
+
86
+ mic_transcribe = gr.Interface(
87
+ fn=transcribe_and_classify_speech,
88
+ inputs=gr.Audio(sources="microphone", type="filepath"),
89
+ outputs=gr.components.Textbox(),
90
+ examples=examples,
91
+ )
92
+
93
+ file_transcribe = gr.Interface(
94
+ fn=transcribe_and_classify_speech,
95
+ inputs=gr.Audio(sources="upload", type="filepath"),
96
+ outputs=gr.components.Textbox(),
97
+ examples=examples,
98
+ )
99
+
100
+ # Launch gradio app demo
101
+ with demo:
102
+ gr.TabbedInterface(
103
+ [mic_transcribe, file_transcribe],
104
+ ["Transcribe Microphone", "Transcribe Audio File"],
105
+ )
106
+
107
+ demo.launch(debug=True)
108
+
109
+
110
+ #def greet(name):
111
+ # return "Hello " + name + "!!"
112
+
113
+ #demo = gr.Interface(fn=greet, inputs="text", outputs="text")
114
+ #demo.launch()
chinese-american.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdce1a1d3cc295e1bacc7b336a113fbb50175ac6ce9e03ec8fb56592ab485e95
3
+ size 1922192
indian.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:935aca9237f0e5301f29e7a198d703448d1b700bd17ddfc2ca41a5ea87e1aebd
3
+ size 1929624
mexican.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0656ce06d8b8afcf8618d398a636227abdad0c8b0310f8992ab7ce6cd30769c
3
+ size 1949312
nigerian.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87f5b33de6ca632c5500ae9bb5bae83516e4845ae631f77bb4a91830226fdba8
3
+ size 1937144
vietnamese.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d71e309a48614c82fcf88ad60fab5dae593e408b8226836d1283d6dde2db4418
3
+ size 400472