Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,731 Bytes
c1b39e1 a7df152 c1b39e1 23f7c2b c1b39e1 a7df152 c1b39e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from timm.models.vision_transformer import PatchEmbed
from huggingface_hub import PyTorchModelHubMixin
class TimestepEmbedder(nn.Module):
"""Module to create timestep's embedding."""
def __init__(self,hidden_size,frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size,hidden_size),
nn.SiLU(),
nn.Linear(hidden_size,hidden_size)
)
self.frequency_embedding_size = frequency_embedding_size
def forward(self, t):
half = self.frequency_embedding_size // 2
freqs = torch.exp(
-math.log(10000) * torch.arange(start=0,end=half) / half
).to(device=t.device)
args = torch.einsum('i,j->ij', t, freqs.to(t.device))
freqs = torch.cat([torch.cos(args),torch.sin(args)],dim=-1)
mlp_dtype = next(self.mlp.parameters()).dtype
freqs_casted = freqs.to(mlp_dtype)
return self.mlp(freqs_casted)
class ViTAttn(nn.Module):
def __init__(self,hidden_size,num_heads):
super().__init__()
self.attn = nn.MultiheadAttention(hidden_size,num_heads,bias=True,add_bias_kv=True,batch_first=True)
def forward(self,x):
attn, _ = self.attn(x,x,x)
return attn
class DiTBlock(nn.Module):
"""
DiT Block with adaptive layer norm zero (adaLN-Zero) conditioning.
Using post-norm
"""
def __init__(self,hidden_size,num_heads):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size,elementwise_affine=False,eps=1e-6)
self.attn = ViTAttn(hidden_size,num_heads)
self.norm2 = nn.LayerNorm(hidden_size,elementwise_affine=False,eps=1e-6)
self.mlp = nn.Sequential(
nn.Linear(hidden_size,4*hidden_size),
nn.GELU(approximate="tanh"),
nn.Linear(4*hidden_size,hidden_size)
)
self.adaLN = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size,6*hidden_size)
)
def forward(self,x,c):
gamma_1,beta_1,alpha_1,gamma_2,beta_2,alpha_2 = self.adaLN(c).chunk(6,dim=1)
x = self.norm1(x + alpha_1.unsqueeze(1) * self.attn(x))
x = x * (1+gamma_1.unsqueeze(1)) + beta_1.unsqueeze(1)
x = self.norm2(x + alpha_2.unsqueeze(1) * self.mlp(x))
x = x * (1+gamma_2.unsqueeze(1)) + beta_2.unsqueeze(1)
return x
class DiT(nn.Module,
PyTorchModelHubMixin):
def __init__(self,
num_blocks=10,
hidden_size=640,
num_heads=10,
patch_size=2,
num_channels=4,
img_size=32,
num_genres=42,
num_styles=137):
super().__init__()
self.hidden_size = hidden_size
self.patch_size = patch_size
self.num_channels = num_channels
self.seq_len = (img_size // patch_size)**2
self.img_size = img_size
self.blocks = nn.ModuleList(
DiTBlock(hidden_size,num_heads) for _ in range(num_blocks)
)
self.timestep_embed = TimestepEmbedder(hidden_size)
self.num_genres = num_genres
self.num_styles = num_styles
self.genre_condition = nn.Embedding(num_genres+1,hidden_size) # +1 for null condition
self.style_condition = nn.Embedding(num_styles+1,hidden_size)
self.pos_embed = nn.Parameter(torch.zeros(1, self.seq_len, hidden_size))
patch_dim = num_channels * patch_size * patch_size
self.proj_in = nn.Linear(patch_dim,hidden_size)
self.proj_out = nn.Linear(hidden_size,patch_dim)
self.norm_out = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.adaLN_final = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2*hidden_size)
)
self.initialize_weights()
def initialize_weights(self):
nn.init.normal_(self.pos_embed, std=0.02)
nn.init.normal_(self.proj_out.weight, std=0.02)
nn.init.zeros_(self.proj_out.bias)
nn.init.normal_(self.proj_in.weight, std=0.02)
nn.init.zeros_(self.proj_in.bias)
nn.init.normal_(self.timestep_embed.mlp[0].weight, std=0.02)
nn.init.zeros_(self.timestep_embed.mlp[0].bias)
nn.init.normal_(self.timestep_embed.mlp[2].weight, std=0.02)
nn.init.zeros_(self.timestep_embed.mlp[2].bias)
for block in self.blocks:
nn.init.zeros_(block.adaLN[-1].weight)
nn.init.zeros_(block.adaLN[-1].bias)
nn.init.zeros_(self.adaLN_final[-1].weight)
nn.init.zeros_(self.adaLN_final[-1].bias)
nn.init.normal_(self.genre_condition.weight, std=0.02)
nn.init.normal_(self.style_condition.weight, std=0.02)
def patchify(self,z):
"""
from (batch_size,6,32,32) -> (batch_size,256,24) -> (batch_size,256,hidden_size)
"""
b,_,_,_ = z.shape
c = self.num_channels
p = self.patch_size
z = z.unfold(2,p,p).unfold(3,p,p) # (b,c,h//p,p,w//p,p)
z = z.contiguous().view(b,c,-1,p,p) # (b,c,hw//p**2,p,p)
z = torch.einsum('bcapq->bacpq',z).contiguous().view(b,-1,c*p**2) # (b,hw//p**2,c*p**2)
return self.proj_in(z) # (b,hw//p**2,hidden_size)
def unpatchify(self,z):
"""
from (batch_size,256,hidden_size) -> (batch_size,256,24) -> (batch_size,6,32,32)
"""
b,_,_ = z.shape
c = self.num_channels
p = self.patch_size
s = int(self.seq_len ** 0.5)
i = self.img_size
z = self.proj_out(z) # (b,hw//p**2,c*p**2)
z = z.view(b,s,s,c,p,p) # (b,h/p,w/p,c,p,p)
z = torch.einsum('befcpq->bcepfq',z) # (b,c,h/p,p,w/p,p)
z = z.contiguous().view(b,c,i,i)
return z
def forward(self,z,t,g,s):
t_embed = self.timestep_embed(t) # t_embed: (batch_size, hidden_size)
g_embed = self.genre_condition(g)
s_embed = self.style_condition(s)
c = t_embed + g_embed + s_embed
z = self.patchify(z)
z = z + self.pos_embed
for block in self.blocks:
z = block(z,c)
gamma, beta = self.adaLN_final(c).chunk(2,dim=-1)
z = self.norm_out(z)
z = z * (1+gamma.unsqueeze(1)) + beta.unsqueeze(1)
return self.unpatchify(z)
if __name__ == "__main__":
model = DiT(1,768,12,2,6,32)
z = torch.randn(2,6,32,32)
c = torch.randn(2,768)
t = torch.randint(0,1000,(2,))
output = model(z,c,t)
print(z.shape,c.shape,t.shape,output.shape)
output_cfg = model.forward_cfg(z,t)
print(output_cfg.shape)
|