File size: 6,731 Bytes
c1b39e1
 
 
 
 
a7df152
c1b39e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23f7c2b
 
 
 
 
c1b39e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7df152
 
c1b39e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from timm.models.vision_transformer import PatchEmbed
from huggingface_hub import PyTorchModelHubMixin

class TimestepEmbedder(nn.Module):
    """Module to create timestep's embedding."""
    def __init__(self,hidden_size,frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size,hidden_size),
            nn.SiLU(),
            nn.Linear(hidden_size,hidden_size)
        )
        self.frequency_embedding_size = frequency_embedding_size

    def forward(self, t):
        half = self.frequency_embedding_size // 2
        freqs = torch.exp(
            -math.log(10000) * torch.arange(start=0,end=half) / half
        ).to(device=t.device)
        args = torch.einsum('i,j->ij', t, freqs.to(t.device))
        freqs = torch.cat([torch.cos(args),torch.sin(args)],dim=-1)

        mlp_dtype = next(self.mlp.parameters()).dtype
        freqs_casted = freqs.to(mlp_dtype)
        
        return self.mlp(freqs_casted)

class ViTAttn(nn.Module):
    def __init__(self,hidden_size,num_heads):
        super().__init__()
        self.attn = nn.MultiheadAttention(hidden_size,num_heads,bias=True,add_bias_kv=True,batch_first=True)
    
    def forward(self,x):
        attn, _ = self.attn(x,x,x)
        return attn
    
class DiTBlock(nn.Module):
    """
    DiT Block with adaptive layer norm zero (adaLN-Zero) conditioning.
    Using post-norm
    """
    def __init__(self,hidden_size,num_heads):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size,elementwise_affine=False,eps=1e-6)
        self.attn = ViTAttn(hidden_size,num_heads)
        self.norm2 = nn.LayerNorm(hidden_size,elementwise_affine=False,eps=1e-6)
        self.mlp = nn.Sequential(
            nn.Linear(hidden_size,4*hidden_size),
            nn.GELU(approximate="tanh"),
            nn.Linear(4*hidden_size,hidden_size)
        )
        self.adaLN = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size,6*hidden_size)
        )
    
    def forward(self,x,c):
        gamma_1,beta_1,alpha_1,gamma_2,beta_2,alpha_2 = self.adaLN(c).chunk(6,dim=1)
        x = self.norm1(x + alpha_1.unsqueeze(1) * self.attn(x))
        x = x * (1+gamma_1.unsqueeze(1)) + beta_1.unsqueeze(1)
        x = self.norm2(x + alpha_2.unsqueeze(1) * self.mlp(x))
        x = x * (1+gamma_2.unsqueeze(1)) + beta_2.unsqueeze(1)
        return x

class DiT(nn.Module,
         PyTorchModelHubMixin):
    def __init__(self,
                 num_blocks=10,
                 hidden_size=640,
                 num_heads=10,
                 patch_size=2,
                 num_channels=4,
                 img_size=32,
                 num_genres=42,
                 num_styles=137):
        super().__init__()
        self.hidden_size = hidden_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.seq_len = (img_size // patch_size)**2
        self.img_size = img_size
        self.blocks = nn.ModuleList(
            DiTBlock(hidden_size,num_heads) for _ in range(num_blocks)
        )
        self.timestep_embed = TimestepEmbedder(hidden_size)

        self.num_genres = num_genres
        self.num_styles = num_styles
        self.genre_condition = nn.Embedding(num_genres+1,hidden_size) # +1 for null condition
        self.style_condition = nn.Embedding(num_styles+1,hidden_size)

        self.pos_embed = nn.Parameter(torch.zeros(1, self.seq_len, hidden_size))

        patch_dim = num_channels * patch_size * patch_size
        self.proj_in = nn.Linear(patch_dim,hidden_size)
        self.proj_out = nn.Linear(hidden_size,patch_dim)

        self.norm_out = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.adaLN_final = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2*hidden_size)
        )

        self.initialize_weights()

    def initialize_weights(self):
        nn.init.normal_(self.pos_embed, std=0.02)
        nn.init.normal_(self.proj_out.weight, std=0.02)
        nn.init.zeros_(self.proj_out.bias)
        nn.init.normal_(self.proj_in.weight, std=0.02)
        nn.init.zeros_(self.proj_in.bias)

        nn.init.normal_(self.timestep_embed.mlp[0].weight, std=0.02)
        nn.init.zeros_(self.timestep_embed.mlp[0].bias)
        nn.init.normal_(self.timestep_embed.mlp[2].weight, std=0.02)
        nn.init.zeros_(self.timestep_embed.mlp[2].bias)

        for block in self.blocks:
            nn.init.zeros_(block.adaLN[-1].weight)
            nn.init.zeros_(block.adaLN[-1].bias)

        nn.init.zeros_(self.adaLN_final[-1].weight)
        nn.init.zeros_(self.adaLN_final[-1].bias)

        nn.init.normal_(self.genre_condition.weight, std=0.02)
        nn.init.normal_(self.style_condition.weight, std=0.02)

    def patchify(self,z):
        """
        from (batch_size,6,32,32) -> (batch_size,256,24) -> (batch_size,256,hidden_size)
        """
        b,_,_,_ = z.shape
        c = self.num_channels
        p = self.patch_size
        z = z.unfold(2,p,p).unfold(3,p,p) # (b,c,h//p,p,w//p,p)
        z = z.contiguous().view(b,c,-1,p,p) # (b,c,hw//p**2,p,p)
        z = torch.einsum('bcapq->bacpq',z).contiguous().view(b,-1,c*p**2) # (b,hw//p**2,c*p**2)
        return self.proj_in(z) # (b,hw//p**2,hidden_size)

    def unpatchify(self,z):
        """
        from (batch_size,256,hidden_size) -> (batch_size,256,24) -> (batch_size,6,32,32)
        """
        b,_,_ = z.shape
        c = self.num_channels
        p = self.patch_size
        s = int(self.seq_len ** 0.5)
        i = self.img_size
        z = self.proj_out(z) # (b,hw//p**2,c*p**2)
        z = z.view(b,s,s,c,p,p) # (b,h/p,w/p,c,p,p)
        z = torch.einsum('befcpq->bcepfq',z) # (b,c,h/p,p,w/p,p)
        z = z.contiguous().view(b,c,i,i)
        return z


    def forward(self,z,t,g,s):
        t_embed = self.timestep_embed(t) # t_embed: (batch_size, hidden_size)
        g_embed = self.genre_condition(g)
        s_embed = self.style_condition(s)

        c = t_embed + g_embed + s_embed

        z = self.patchify(z)
        z = z + self.pos_embed

        for block in self.blocks:
            z = block(z,c)
        
        gamma, beta = self.adaLN_final(c).chunk(2,dim=-1)
        z = self.norm_out(z)
        z = z * (1+gamma.unsqueeze(1)) + beta.unsqueeze(1)

        return self.unpatchify(z)




if __name__ == "__main__":
    model = DiT(1,768,12,2,6,32)
    z = torch.randn(2,6,32,32)
    c = torch.randn(2,768)
    t = torch.randint(0,1000,(2,))
    output = model(z,c,t)
    print(z.shape,c.shape,t.shape,output.shape)
    output_cfg = model.forward_cfg(z,t)
    print(output_cfg.shape)