Spaces:
Running
on
Zero
Running
on
Zero
Create app_test.py
Browse files- app_test.py +241 -0
app_test.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
from huggingface_hub import login, HfFolder
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, TextIteratorStreamer
|
8 |
+
from scipy.special import softmax
|
9 |
+
import logging
|
10 |
+
import spaces
|
11 |
+
from threading import Thread
|
12 |
+
from collections.abc import Iterator
|
13 |
+
|
14 |
+
# Setup logging
|
15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
|
16 |
+
|
17 |
+
# Set a seed for reproducibility
|
18 |
+
seed = 42
|
19 |
+
np.random.seed(seed)
|
20 |
+
random.seed(seed)
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
torch.cuda.manual_seed_all(seed)
|
24 |
+
|
25 |
+
# Login to Hugging Face
|
26 |
+
token = os.getenv("hf_token")
|
27 |
+
HfFolder.save_token(token)
|
28 |
+
login(token)
|
29 |
+
|
30 |
+
# --- Quality Prediction Model Setup ---
|
31 |
+
model_paths = [
|
32 |
+
'karths/binary_classification_train_test',
|
33 |
+
"karths/binary_classification_train_process",
|
34 |
+
"karths/binary_classification_train_infrastructure",
|
35 |
+
"karths/binary_classification_train_documentation",
|
36 |
+
"karths/binary_classification_train_design",
|
37 |
+
"karths/binary_classification_train_defect",
|
38 |
+
"karths/binary_classification_train_code",
|
39 |
+
"karths/binary_classification_train_build",
|
40 |
+
"karths/binary_classification_train_automation",
|
41 |
+
"karths/binary_classification_train_people",
|
42 |
+
"karths/binary_classification_train_architecture",
|
43 |
+
]
|
44 |
+
|
45 |
+
quality_mapping = {
|
46 |
+
'binary_classification_train_test': 'Test',
|
47 |
+
'binary_classification_train_process': 'Process',
|
48 |
+
'binary_classification_train_infrastructure': 'Infrastructure',
|
49 |
+
'binary_classification_train_documentation': 'Documentation',
|
50 |
+
'binary_classification_train_design': 'Design',
|
51 |
+
'binary_classification_train_defect': 'Defect',
|
52 |
+
'binary_classification_train_code': 'Code',
|
53 |
+
'binary_classification_train_build': 'Build',
|
54 |
+
'binary_classification_train_automation': 'Automation',
|
55 |
+
'binary_classification_train_people': 'People',
|
56 |
+
'binary_classification_train_architecture': 'Architecture'
|
57 |
+
}
|
58 |
+
|
59 |
+
# Pre-load models and tokenizer for quality prediction
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
|
61 |
+
models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths}
|
62 |
+
|
63 |
+
def get_quality_name(model_name):
|
64 |
+
return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality")
|
65 |
+
|
66 |
+
@spaces.GPU
|
67 |
+
def model_prediction(model, text, device):
|
68 |
+
model.to(device)
|
69 |
+
model.eval()
|
70 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
71 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
72 |
+
with torch.no_grad():
|
73 |
+
outputs = model(**inputs)
|
74 |
+
logits = outputs.logits
|
75 |
+
probs = softmax(logits.cpu().numpy(), axis=1)
|
76 |
+
avg_prob = np.mean(probs[:, 1])
|
77 |
+
return avg_prob
|
78 |
+
|
79 |
+
# --- Llama 3.2 3B Model Setup ---
|
80 |
+
LLAMA_MAX_MAX_NEW_TOKENS = 2048
|
81 |
+
LLAMA_DEFAULT_MAX_NEW_TOKENS = 1024
|
82 |
+
LLAMA_MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
83 |
+
llama_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Explicitly define device
|
84 |
+
llama_model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
85 |
+
llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_id)
|
86 |
+
llama_model = AutoModelForCausalLM.from_pretrained(
|
87 |
+
llama_model_id,
|
88 |
+
device_map="auto", # Automatically distribute model across devices
|
89 |
+
torch_dtype=torch.bfloat16,
|
90 |
+
)
|
91 |
+
llama_model.eval()
|
92 |
+
|
93 |
+
|
94 |
+
@spaces.GPU(duration=90)
|
95 |
+
def llama_generate(
|
96 |
+
message: str,
|
97 |
+
max_new_tokens: int = LLAMA_DEFAULT_MAX_NEW_TOKENS,
|
98 |
+
temperature: float = 0.6,
|
99 |
+
top_p: float = 0.9,
|
100 |
+
top_k: int = 50,
|
101 |
+
repetition_penalty: float = 1.2,
|
102 |
+
) -> Iterator[str]:
|
103 |
+
|
104 |
+
input_ids = llama_tokenizer.encode(message, return_tensors="pt").to(llama_model.device)
|
105 |
+
|
106 |
+
if input_ids.shape[1] > LLAMA_MAX_INPUT_TOKEN_LENGTH:
|
107 |
+
input_ids = input_ids[:, -LLAMA_MAX_INPUT_TOKEN_LENGTH:]
|
108 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {LLAMA_MAX_INPUT_TOKEN_LENGTH} tokens.")
|
109 |
+
|
110 |
+
streamer = TextIteratorStreamer(llama_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
111 |
+
generate_kwargs = dict(
|
112 |
+
{"input_ids": input_ids},
|
113 |
+
streamer=streamer,
|
114 |
+
max_new_tokens=max_new_tokens,
|
115 |
+
do_sample=True,
|
116 |
+
top_p=top_p,
|
117 |
+
top_k=top_k,
|
118 |
+
temperature=temperature,
|
119 |
+
num_beams=1,
|
120 |
+
repetition_penalty=repetition_penalty,
|
121 |
+
)
|
122 |
+
t = Thread(target=llama_model.generate, kwargs=generate_kwargs)
|
123 |
+
t.start()
|
124 |
+
outputs = []
|
125 |
+
for text in streamer:
|
126 |
+
outputs.append(text)
|
127 |
+
yield "".join(outputs)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
def generate_explanation(issue_text, top_qualities):
|
132 |
+
"""Generates an explanation using Llama 3.2 3B."""
|
133 |
+
if not top_qualities:
|
134 |
+
return "No explanation available as no quality tags were predicted."
|
135 |
+
|
136 |
+
prompt = f"""
|
137 |
+
Given the following issue description:
|
138 |
+
---
|
139 |
+
{issue_text}
|
140 |
+
---
|
141 |
+
Explain why this issue might be classified under the following quality categories: {', '.join([q[0] for q in top_qualities])}.
|
142 |
+
Provide a concise explanation for each category, relating it back to the issue description.
|
143 |
+
"""
|
144 |
+
explanation = ""
|
145 |
+
try:
|
146 |
+
for chunk in llama_generate(prompt):
|
147 |
+
explanation += chunk # Accumulate generated text
|
148 |
+
except Exception as e:
|
149 |
+
logging.error(f"Error during Llama generation: {e}")
|
150 |
+
return "An error occurred while generating the explanation."
|
151 |
+
|
152 |
+
return explanation
|
153 |
+
|
154 |
+
|
155 |
+
def main_interface(text):
|
156 |
+
if not text.strip():
|
157 |
+
return "<div style='color: red;'>No text provided. Please enter a valid issue description.</div>", "", ""
|
158 |
+
|
159 |
+
if len(text) < 30:
|
160 |
+
return "<div style='color: red;'>Text is less than 30 characters.</div>", "", ""
|
161 |
+
|
162 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
163 |
+
results = []
|
164 |
+
for model_path, model in models.items():
|
165 |
+
quality_name = get_quality_name(model_path)
|
166 |
+
avg_prob = model_prediction(model, text, device)
|
167 |
+
if avg_prob >= 0.95:
|
168 |
+
results.append((quality_name, avg_prob))
|
169 |
+
logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}")
|
170 |
+
|
171 |
+
if not results:
|
172 |
+
return "<div style='color: red;'>No recommendation. Prediction probability is below the threshold. </div>", "", ""
|
173 |
+
|
174 |
+
top_qualities = sorted(results, key=lambda x: x[1], reverse=True)[:3]
|
175 |
+
output_html = render_html_output(top_qualities)
|
176 |
+
|
177 |
+
# Generate explanation using the top qualities and the original input text
|
178 |
+
explanation = generate_explanation(text, top_qualities)
|
179 |
+
|
180 |
+
return output_html, "", explanation # Return explanation as the third output
|
181 |
+
|
182 |
+
def render_html_output(top_qualities):
|
183 |
+
styles = """
|
184 |
+
<style>
|
185 |
+
.quality-container {
|
186 |
+
font-family: Arial, sans-serif;
|
187 |
+
text-align: center;
|
188 |
+
margin-top: 20px;
|
189 |
+
}
|
190 |
+
.quality-label, .ranking {
|
191 |
+
display: inline-block;
|
192 |
+
padding: 0.5em 1em;
|
193 |
+
font-size: 18px;
|
194 |
+
font-weight: bold;
|
195 |
+
color: white;
|
196 |
+
background-color: #007bff;
|
197 |
+
border-radius: 0.5rem;
|
198 |
+
margin-right: 10px;
|
199 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
200 |
+
}
|
201 |
+
.probability {
|
202 |
+
display: block;
|
203 |
+
margin-top: 10px;
|
204 |
+
font-size: 16px;
|
205 |
+
color: #007bff;
|
206 |
+
}
|
207 |
+
</style>
|
208 |
+
"""
|
209 |
+
html_content = ""
|
210 |
+
ranking_labels = ['Top 1 Prediction', 'Top 2 Prediction', 'Top 3 Prediction']
|
211 |
+
top_n = min(len(top_qualities), len(ranking_labels))
|
212 |
+
for i in range(top_n):
|
213 |
+
quality, prob = top_qualities[i]
|
214 |
+
html_content += f"""
|
215 |
+
<div class="quality-container">
|
216 |
+
<span class="ranking">{ranking_labels[i]}</span>
|
217 |
+
<span class="quality-label">{quality}</span>
|
218 |
+
</div>
|
219 |
+
"""
|
220 |
+
return styles + html_content
|
221 |
+
|
222 |
+
example_texts = [
|
223 |
+
["The algorithm does not accurately distinguish between the positive and negative classes during edge cases.\n\nEnvironment: Production\nReproduction: Run the classifier on the test dataset with known edge cases."],
|
224 |
+
["The regression tests do not cover scenarios involving concurrent user sessions.\n\nEnvironment: Test automation suite\nReproduction: Update the test scripts to include tests for concurrent sessions."],
|
225 |
+
["There is frequent miscommunication between the development and QA teams regarding feature specifications.\n\nEnvironment: Inter-team meetings\nReproduction: Audit recent communication logs and meeting notes between the teams."],
|
226 |
+
["The service-oriented architecture does not effectively isolate failures, leading to cascading failures across services.\n\nEnvironment: Microservices architecture\nReproduction: Simulate a service failure and observe the impact on other services."]
|
227 |
+
]
|
228 |
+
|
229 |
+
interface = gr.Interface(
|
230 |
+
fn=main_interface,
|
231 |
+
inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"),
|
232 |
+
outputs=[
|
233 |
+
gr.HTML(label="Prediction Output"),
|
234 |
+
gr.Textbox(label="Predictions", visible=False),
|
235 |
+
gr.Textbox(label="Explanation", lines=5) # Added Textbox for explanation
|
236 |
+
],
|
237 |
+
title="QualityTagger",
|
238 |
+
description="This tool classifies text into different quality domains such as Security, Usability, etc., and provides explanations.",
|
239 |
+
examples=example_texts
|
240 |
+
)
|
241 |
+
interface.launch(share=True)
|