karths's picture
Update app.py
cf669ef verified
raw
history blame
5.71 kB
import json
import gradio as gr
import os
import requests
from huggingface_hub import AsyncInferenceClient
HF_TOKEN = os.getenv('HF_TOKEN')
api_url = os.getenv('API_URL')
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
client = AsyncInferenceClient(api_url)
title = "Python maintainability refactoring"
description = """
## Instructions for Using the Model
### Model Loading Time:
- Please allow 2 to 3 minutes for the model to load and run, especially on the first usage which might experience a "Cold Start."
### Code Submission:
- You can enter or paste your python code you wish to have refactored, or use the provided example.
### Python Code Constraints:
- When using this tool, keep the code under 120 lines due to GPU constraints.
### Understanding Changes:
- It's important to read the "Changes made" section at the end of the refactored code response. This will help in understanding what modifications have been made to enhance the maintainability and readability of the code.
### Usage Recommendation:
- Do not use this for personal projects; try it for research purposes only, as running these GPUs is costly.
"""
system_prompt = """
### Instruction:
Refactor the provided Python code to improve its maintainability and efficiency and reduce complexity. Include the refactored code along with the comments on the changes made for improving the metrics.
### Input:
"""
css = """.toast-wrap { display: none !important } """
examples=[ ["""
def analyze_sales_data(sales_records):
active_sales = filter(lambda record: record['status'] == 'active', sales_records)
sales_by_category = {}
for record in active_sales:
category = record['category']
total_sales = record['units_sold'] * record['price_per_unit']
if category not in sales_by_category:
sales_by_category[category] = {'total_sales': 0, 'total_units': 0}
sales_by_category[category]['total_sales'] += total_sales
sales_by_category[category]['total_units'] += record['units_sold']
average_sales_data = []
for category, data in sales_by_category.items():
average_sales = data['total_sales'] / data['total_units']
sales_by_category[category]['average_sales'] = average_sales
average_sales_data.append((category, average_sales))
average_sales_data.sort(key=lambda x: x[1], reverse=True)
for rank, (category, _) in enumerate(average_sales_data, start=1):
sales_by_category[category]['rank'] = rank
return sales_by_category
"""] ,
["""
import pandas as pd
import re
import ast
from code_bert_score import score
import numpy as np
def preprocess_code(source_text):
def remove_comments_and_docstrings(source_code):
source_code = re.sub(r'#.*', '', source_code)
source_code = re.sub(r'(\'\'\'(.*?)\'\'\'|\"\"\"(.*?)\"\"\")', '', source_code, flags=re.DOTALL)
return source_code
pattern = r"```python\s+(.+?)\s+```"
matches = re.findall(pattern, source_text, re.DOTALL)
code_to_process = '\n'.join(matches) if matches else source_text
cleaned_code = remove_comments_and_docstrings(code_to_process)
return cleaned_code
def evaluate_dataframe(df):
results = {'P': [], 'R': [], 'F1': [], 'F3': []}
for index, row in df.iterrows():
try:
cands = [preprocess_code(row['generated_text'])]
refs = [preprocess_code(row['output'])]
P, R, F1, F3 = score(cands, refs, lang='python')
results['P'].append(P[0])
results['R'].append(R[0])
results['F1'].append(F1[0])
results['F3'].append(F3[0])
except Exception as e:
print(f"Error processing row {index}: {e}")
for key in results.keys():
results[key].append(None)
df_metrics = pd.DataFrame(results)
return df_metrics
def evaluate_dataframe_multiple_runs(df, runs=3):
all_results = []
for run in range(runs):
df_metrics = evaluate_dataframe(df)
all_results.append(df_metrics)
# Calculate mean and std deviation of metrics across runs
df_metrics_mean = pd.concat(all_results).groupby(level=0).mean()
df_metrics_std = pd.concat(all_results).groupby(level=0).std()
return df_metrics_mean, df_metrics_std
""" ] ]
# Stream text - stream tokens with InferenceClient from TGI
async def predict(message, chatbot, temperature=0.1, max_new_tokens=4096, top_p=0.6, repetition_penalty=1.15,):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
input_prompt = system_prompt + str(message) + " [/INST] "
partial_message = ""
async for token in await client.text_generation(prompt=input_prompt,
max_new_tokens=max_new_tokens,
stream=True,
best_of=1,
temperature=temperature,
top_p=top_p,
do_sample=True,
repetition_penalty=repetition_penalty):
partial_message = partial_message + token
yield partial_message
gr.ChatInterface(
predict,
chatbot=gr.Chatbot(height=500),
textbox=gr.Textbox(lines=10, label="Python Code" , placeholder="Enter or Paste your Python code here..."),
title=title,
description=description,
theme="abidlabs/Lime",
examples=examples,
cache_examples=False,
submit_btn = "Submit_code",
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
).queue().launch(share=True)