Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -34,7 +34,8 @@ if "tokenizer" not in st.session_state:
|
|
34 |
if "qa_pipeline" not in st.session_state:
|
35 |
st.session_state["qa_pipeline"] = None
|
36 |
if "conversation" not in st.session_state:
|
37 |
-
# We'll store conversation as a list of dicts,
|
|
|
38 |
st.session_state["conversation"] = []
|
39 |
|
40 |
# ----- Load Model -----
|
@@ -76,9 +77,7 @@ if load_model_button:
|
|
76 |
st.session_state["tokenizer"] = tokenizer
|
77 |
st.session_state["qa_pipeline"] = qa_pipe
|
78 |
|
79 |
-
#
|
80 |
-
# Add a welcome message only once, if conversation is empty
|
81 |
-
# ---------------------------
|
82 |
if len(st.session_state["conversation"]) == 0:
|
83 |
st.session_state["conversation"].append({
|
84 |
"role": "assistant",
|
@@ -102,85 +101,88 @@ if clear_conversation_button:
|
|
102 |
st.success("Conversation cleared.")
|
103 |
|
104 |
# ----- Title -----
|
105 |
-
st.title("
|
106 |
|
107 |
-
user_input = None # We'll collect it below
|
108 |
|
109 |
-
|
|
|
110 |
if st.session_state["qa_pipeline"]:
|
|
|
111 |
user_input = st.chat_input("Enter your query:")
|
112 |
if user_input:
|
113 |
-
# 1) Save user message
|
114 |
-
st.session_state["conversation"].append({
|
|
|
|
|
|
|
115 |
|
116 |
# 2) Generate assistant response
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
# If we have the calculation model loaded (model_options["1"]):
|
133 |
elif st.session_state["model"] and (model_choice == model_options["1"]):
|
|
|
134 |
user_input = st.chat_input("Enter your query for calculation:")
|
135 |
if user_input:
|
136 |
# 1) Save user message
|
137 |
-
st.session_state["conversation"].append({
|
|
|
|
|
|
|
138 |
|
139 |
# 2) Generate assistant response
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
# 3) Save assistant message
|
180 |
-
st.session_state["conversation"].append({"role": "assistant", "content": answer})
|
181 |
-
|
182 |
-
# If no model is loaded at all:
|
183 |
else:
|
|
|
184 |
st.info("No model is loaded. Please select a model and click 'Load Model' from the sidebar.")
|
185 |
|
186 |
|
|
|
34 |
if "qa_pipeline" not in st.session_state:
|
35 |
st.session_state["qa_pipeline"] = None
|
36 |
if "conversation" not in st.session_state:
|
37 |
+
# We'll store conversation as a list of dicts,
|
38 |
+
# e.g. [{"role": "assistant", "content": "Hello..."}, {"role": "user", "content": "..."}]
|
39 |
st.session_state["conversation"] = []
|
40 |
|
41 |
# ----- Load Model -----
|
|
|
77 |
st.session_state["tokenizer"] = tokenizer
|
78 |
st.session_state["qa_pipeline"] = qa_pipe
|
79 |
|
80 |
+
# If conversation is empty, insert a welcome message
|
|
|
|
|
81 |
if len(st.session_state["conversation"]) == 0:
|
82 |
st.session_state["conversation"].append({
|
83 |
"role": "assistant",
|
|
|
101 |
st.success("Conversation cleared.")
|
102 |
|
103 |
# ----- Title -----
|
104 |
+
st.title("Chat Conversation UI")
|
105 |
|
|
|
106 |
|
107 |
+
user_input = None
|
108 |
+
|
109 |
if st.session_state["qa_pipeline"]:
|
110 |
+
# T5 pipeline
|
111 |
user_input = st.chat_input("Enter your query:")
|
112 |
if user_input:
|
113 |
+
# 1) Save user message
|
114 |
+
st.session_state["conversation"].append({
|
115 |
+
"role": "user",
|
116 |
+
"content": user_input
|
117 |
+
})
|
118 |
|
119 |
# 2) Generate assistant response
|
120 |
+
try:
|
121 |
+
response = st.session_state["qa_pipeline"](
|
122 |
+
f"Q: {user_input}", max_length=250
|
123 |
+
)
|
124 |
+
answer = response[0]["generated_text"]
|
125 |
+
except Exception as e:
|
126 |
+
answer = f"Error: {str(e)}"
|
127 |
+
|
128 |
+
# 3) Append assistant message to conversation
|
129 |
+
st.session_state["conversation"].append({
|
130 |
+
"role": "assistant",
|
131 |
+
"content": answer
|
132 |
+
})
|
133 |
+
|
|
|
|
|
134 |
elif st.session_state["model"] and (model_choice == model_options["1"]):
|
135 |
+
# Calculation model
|
136 |
user_input = st.chat_input("Enter your query for calculation:")
|
137 |
if user_input:
|
138 |
# 1) Save user message
|
139 |
+
st.session_state["conversation"].append({
|
140 |
+
"role": "user",
|
141 |
+
"content": user_input
|
142 |
+
})
|
143 |
|
144 |
# 2) Generate assistant response
|
145 |
+
tokenizer = st.session_state["tokenizer"]
|
146 |
+
model = st.session_state["model"]
|
147 |
+
|
148 |
+
try:
|
149 |
+
inputs = tokenizer(
|
150 |
+
f"Input: {user_input}\nOutput:",
|
151 |
+
return_tensors="pt",
|
152 |
+
padding=True,
|
153 |
+
truncation=True
|
154 |
+
)
|
155 |
+
input_ids = inputs.input_ids
|
156 |
+
attention_mask = inputs.attention_mask
|
157 |
+
|
158 |
+
output = model.generate(
|
159 |
+
input_ids=input_ids,
|
160 |
+
attention_mask=attention_mask,
|
161 |
+
max_length=250,
|
162 |
+
pad_token_id=tokenizer.pad_token_id,
|
163 |
+
eos_token_id=tokenizer.eos_token_id,
|
164 |
+
do_sample=False
|
165 |
+
)
|
166 |
+
|
167 |
+
decoded_output = tokenizer.decode(
|
168 |
+
output[0],
|
169 |
+
skip_special_tokens=True
|
170 |
+
)
|
171 |
+
# Extract answer after 'Output:' if present
|
172 |
+
if "Output:" in decoded_output:
|
173 |
+
answer = decoded_output.split("Output:")[-1].strip()
|
174 |
+
else:
|
175 |
+
answer = decoded_output.strip()
|
176 |
+
except Exception as e:
|
177 |
+
answer = f"Error: {str(e)}"
|
178 |
+
|
179 |
+
# 3) Append assistant message to conversation
|
180 |
+
st.session_state["conversation"].append({
|
181 |
+
"role": "assistant",
|
182 |
+
"content": answer
|
183 |
+
})
|
|
|
|
|
|
|
|
|
184 |
else:
|
185 |
+
# If no model is loaded:
|
186 |
st.info("No model is loaded. Please select a model and click 'Load Model' from the sidebar.")
|
187 |
|
188 |
|