File size: 7,411 Bytes
62098f3
c2d1e89
62098f3
 
409d83c
f0b46d5
62098f3
 
 
c2d1e89
 
 
 
 
 
62098f3
 
 
 
 
c4c458c
62098f3
409d83c
62098f3
 
 
 
 
 
 
 
d371388
 
62098f3
 
 
 
 
c2d1e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62098f3
 
 
 
 
 
 
 
 
 
 
c4c458c
f0b46d5
 
 
 
 
 
 
 
 
 
62098f3
c4c458c
f70af54
 
 
 
 
 
 
 
732cf88
 
c2d1e89
732cf88
 
f0b46d5
 
732cf88
 
f0b46d5
 
 
 
 
 
732cf88
 
c2d1e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c458c
62098f3
 
 
f70af54
e559684
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline, AutoTokenizer, AutoModelForCausalLM
import torch

# Streamlit app setup
st.set_page_config(page_title="Chat", layout="wide")

# Sidebar: Model controls
st.sidebar.title("Model Controls")
model_options = {
    "1": "karthikeyan-r/slm-custom-model_6k",
    "2": "karthikeyan-r/calculation_model"
}

model_choice = st.sidebar.selectbox("Select Model", options=list(model_options.values()))
load_model_button = st.sidebar.button("Load Model")
clear_conversation_button = st.sidebar.button("Clear Conversation")
clear_model_button = st.sidebar.button("Clear Model")

# Main UI
st.title("Chat Conversation UI")

# Session states
if "model" not in st.session_state:
    st.session_state["model"] = None
if "tokenizer" not in st.session_state:
    st.session_state["tokenizer"] = None
if "qa_pipeline" not in st.session_state:
    st.session_state["qa_pipeline"] = None
if "conversation" not in st.session_state:
    st.session_state["conversation"] = []
if "user_input" not in st.session_state:
    st.session_state["user_input"] = ""

# Load Model
if load_model_button:
    with st.spinner("Loading model..."):
        try:
            # Load the selected model
            if model_choice == model_options["1"]:
                # Load the T5 model for general QA (slm-custom-model_6k)
                device = 0 if torch.cuda.is_available() else -1
                st.session_state["model"] = T5ForConditionalGeneration.from_pretrained(model_choice, cache_dir="./model_cache")
                st.session_state["tokenizer"] = T5Tokenizer.from_pretrained(model_choice, cache_dir="./model_cache")
                st.session_state["qa_pipeline"] = pipeline(
                    "text2text-generation",
                    model=st.session_state["model"],
                    tokenizer=st.session_state["tokenizer"],
                    device=device
                )
            elif model_choice == model_options["2"]:
                # Load the calculation model (calculation_model)
                tokenizer = AutoTokenizer.from_pretrained(model_choice, cache_dir="./model_cache")
                model = AutoModelForCausalLM.from_pretrained(model_choice, cache_dir="./model_cache")
                
                # Add special tokens if not present
                if tokenizer.pad_token is None:
                    tokenizer.add_special_tokens({'pad_token': '[PAD]'})
                    model.resize_token_embeddings(len(tokenizer))

                if tokenizer.eos_token is None:
                    tokenizer.add_special_tokens({'eos_token': '[EOS]'})
                    model.resize_token_embeddings(len(tokenizer))

                # Update configuration
                model.config.pad_token_id = tokenizer.pad_token_id
                model.config.eos_token_id = tokenizer.eos_token_id

                st.session_state["model"] = model
                st.session_state["tokenizer"] = tokenizer
                st.session_state["qa_pipeline"] = None  # Calculation model doesn't use text2text pipeline
            st.success("Model loaded successfully and ready!")
        except Exception as e:
            st.error(f"Error loading model: {e}")

# Clear Model
if clear_model_button:
    st.session_state["model"] = None
    st.session_state["tokenizer"] = None
    st.session_state["qa_pipeline"] = None
    st.success("Model cleared.")

# Chat Conversation Display
def display_conversation():
    """Display the chat conversation dynamically."""
    st.subheader("Conversation")
    for idx, (speaker, message) in enumerate(st.session_state["conversation"]):
        if speaker == "You":
            st.markdown(f"**You:** {message}")
        else:
            st.markdown(f"**Model:** {message}")

display_conversation()

# Input Area
if st.session_state["qa_pipeline"]:
    user_input = st.text_input(
        "Enter your query:",
        value=st.session_state["user_input"],  # Use session state for persistence
        key="chat_input",
    )
    if st.button("Send", key="send_button"):
        if user_input:
            with st.spinner("Generating response..."):
                try:
                    # Generate the model response for general QA (T5 model)
                    response = st.session_state["qa_pipeline"](f"Q: {user_input}", max_length=400)
                    generated_text = response[0]["generated_text"]

                    # Update the conversation
                    st.session_state["conversation"].append(("You", user_input))
                    st.session_state["conversation"].append(("Model", generated_text))

                    # Clear the input field after submission
                    st.session_state["user_input"] = ""

                    # Rerender the conversation immediately
                    display_conversation()
                except Exception as e:
                    st.error(f"Error generating response: {e}")
else:
    # Handle user input for the calculation model (calculation_model)
    if st.session_state["model"] and model_choice == model_options["2"]:
        user_input = st.text_input(
            "Enter your query for calculation:",
            value=st.session_state["user_input"],
            key="calculation_input",
        )
        if st.button("Send Calculation", key="send_calculation_button"):
            if user_input:
                with st.spinner("Generating response..."):
                    try:
                        # Generate the model response for the calculation model
                        inputs = st.session_state["tokenizer"](f"Input: {user_input}\nOutput:", return_tensors="pt", padding=True, truncation=True)
                        input_ids = inputs.input_ids
                        attention_mask = inputs.attention_mask

                        output = st.session_state["model"].generate(
                            input_ids=input_ids,
                            attention_mask=attention_mask,
                            max_length=50,
                            pad_token_id=st.session_state["tokenizer"].pad_token_id,
                            eos_token_id=st.session_state["tokenizer"].eos_token_id,
                            do_sample=False
                        )

                        decoded_output = st.session_state["tokenizer"].decode(output[0], skip_special_tokens=True)
                        if "Output:" in decoded_output:
                            answer = decoded_output.split("Output:")[-1].strip()
                        else:
                            answer = decoded_output.strip()

                        # Update the conversation
                        st.session_state["conversation"].append(("You", user_input))
                        st.session_state["conversation"].append(("Model", answer))

                        # Clear the input field after submission
                        st.session_state["user_input"] = ""

                        # Rerender the conversation immediately
                        display_conversation()
                    except Exception as e:
                        st.error(f"Error generating response: {e}")

# Clear Conversation
if clear_conversation_button:
    st.session_state["conversation"] = []
    st.session_state["user_input"] = ""  # Clear input field
    st.success("Conversation cleared.")