karthickg12 commited on
Commit
07f5040
·
verified ·
1 Parent(s): 1f6bf60

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -12
app.py CHANGED
@@ -72,17 +72,40 @@
72
  # st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png")
73
  # st.success("Thanks for using the app !!!")
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  import torch
76
  import streamlit as st
77
- from transformers import AutoModelForCausalLM, AutoTokenizer
78
-
79
- #torch.set_default_device("cuda")
80
-
81
- model = AutoModelForCausalLM.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", torch_dtype="auto", trust_remote_code=True)
82
- tokenizer = AutoTokenizer.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", trust_remote_code=True)
83
- i=st.text_input('Prompt', 'Life of Brian')
84
- #inputs = tokenizer('''### Instruction: What Does Basic Homeowners Insurance Cover?\n### Response: ''', return_tensors="pt", return_attention_mask=False)
85
- inputs = tokenizer(i, return_tensors="pt", return_attention_mask=False)
86
- outputs = model.generate(**inputs, max_length=1024)
87
- text = tokenizer.batch_decode(outputs)[0]
88
- print(text)
 
 
 
 
 
 
 
 
 
72
  # st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png")
73
  # st.success("Thanks for using the app !!!")
74
 
75
+ # import torch
76
+ # import streamlit as st
77
+ # from transformers import AutoModelForCausalLM, AutoTokenizer
78
+
79
+ # #torch.set_default_device("cuda")
80
+
81
+ # model = AutoModelForCausalLM.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", torch_dtype="auto", trust_remote_code=True)
82
+ # tokenizer = AutoTokenizer.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", trust_remote_code=True)
83
+ # i=st.text_input('Prompt', 'Life of Brian')
84
+ # #inputs = tokenizer('''### Instruction: What Does Basic Homeowners Insurance Cover?\n### Response: ''', return_tensors="pt", return_attention_mask=False)
85
+ # inputs = tokenizer(i, return_tensors="pt", return_attention_mask=False)
86
+ # outputs = model.generate(**inputs, max_length=1024)
87
+ # text = tokenizer.batch_decode(outputs)[0]
88
+ # print(text)
89
+
90
  import torch
91
  import streamlit as st
92
+ from transformers import AutoModelForCausalseq2seqLM, AutoTokenizer
93
+
94
+ model_name="facebook/blenderbot-400M-distill"
95
+
96
+ model=AutoModelForCausalseq2seqLM.from_pretrained(model_name)
97
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
98
+ ch=[]
99
+ chat():
100
+
101
+ h_s="\n".join(ch)
102
+ i=st.input("enter")
103
+ IS=TOKENIZER.ENCODE_PLUS(H_S,I,return_tensors="pt")
104
+ outputs=model.generate(**inputs,max_length=60)
105
+ response=tokenizer.decode(outputs[0],skip_special_tokens=True).strip()
106
+ c_h.appned(i)
107
+ c_h.append(response)
108
+ return response
109
+ if __name__ == "__main__":
110
+ chat()
111
+