Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -72,17 +72,40 @@
|
|
72 |
# st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png")
|
73 |
# st.success("Thanks for using the app !!!")
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
import torch
|
76 |
import streamlit as st
|
77 |
-
from transformers import
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
model
|
82 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png")
|
73 |
# st.success("Thanks for using the app !!!")
|
74 |
|
75 |
+
# import torch
|
76 |
+
# import streamlit as st
|
77 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
78 |
+
|
79 |
+
# #torch.set_default_device("cuda")
|
80 |
+
|
81 |
+
# model = AutoModelForCausalLM.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", torch_dtype="auto", trust_remote_code=True)
|
82 |
+
# tokenizer = AutoTokenizer.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", trust_remote_code=True)
|
83 |
+
# i=st.text_input('Prompt', 'Life of Brian')
|
84 |
+
# #inputs = tokenizer('''### Instruction: What Does Basic Homeowners Insurance Cover?\n### Response: ''', return_tensors="pt", return_attention_mask=False)
|
85 |
+
# inputs = tokenizer(i, return_tensors="pt", return_attention_mask=False)
|
86 |
+
# outputs = model.generate(**inputs, max_length=1024)
|
87 |
+
# text = tokenizer.batch_decode(outputs)[0]
|
88 |
+
# print(text)
|
89 |
+
|
90 |
import torch
|
91 |
import streamlit as st
|
92 |
+
from transformers import AutoModelForCausalseq2seqLM, AutoTokenizer
|
93 |
+
|
94 |
+
model_name="facebook/blenderbot-400M-distill"
|
95 |
+
|
96 |
+
model=AutoModelForCausalseq2seqLM.from_pretrained(model_name)
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
98 |
+
ch=[]
|
99 |
+
chat():
|
100 |
+
|
101 |
+
h_s="\n".join(ch)
|
102 |
+
i=st.input("enter")
|
103 |
+
IS=TOKENIZER.ENCODE_PLUS(H_S,I,return_tensors="pt")
|
104 |
+
outputs=model.generate(**inputs,max_length=60)
|
105 |
+
response=tokenizer.decode(outputs[0],skip_special_tokens=True).strip()
|
106 |
+
c_h.appned(i)
|
107 |
+
c_h.append(response)
|
108 |
+
return response
|
109 |
+
if __name__ == "__main__":
|
110 |
+
chat()
|
111 |
+
|