Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for positional_encodings.""" | |
import tensorflow as tf | |
from deeplab2.model.layers import positional_encodings | |
class PositionalEncodingsTest(tf.test.TestCase): | |
def test_compute_relative_distance_matrix_output_shape(self): | |
output = positional_encodings._compute_relative_distance_matrix(33, 97) | |
self.assertListEqual(output.get_shape().as_list(), [33, 97]) | |
def test_relative_positional_encoding_output_shape(self): | |
layer = positional_encodings.RelativePositionalEncoding( | |
33, 97, 32, 8, 'rpe') | |
output = layer(None) | |
self.assertListEqual(output.get_shape().as_list(), [8, 33, 97, 32]) | |
def test_add_absolute_positional_encoding_1d_output_shape(self): | |
layer = positional_encodings.AddAbsolutePositionalEncoding( | |
'ape1d', positional_encoding_type='1d') | |
shape = [2, 5, 5, 3] | |
output = layer(tf.zeros(shape)) | |
self.assertEqual(len(layer.get_weights()), 10) | |
self.assertListEqual(output.get_shape().as_list(), shape) | |
def test_add_absolute_positional_encoding_2d_output_shape(self): | |
layer = positional_encodings.AddAbsolutePositionalEncoding( | |
'ape2d', positional_encoding_type='2d') | |
shape = [2, 5, 5, 3] | |
output = layer(tf.zeros(shape)) | |
self.assertEqual(len(layer.get_weights()), 5) | |
self.assertListEqual(output.get_shape().as_list(), shape) | |
def test_add_absolute_positional_encoding_none_output_shape(self): | |
layer = positional_encodings.AddAbsolutePositionalEncoding( | |
'none', positional_encoding_type='none') | |
shape = [2, 5, 5, 3] | |
output = layer(tf.zeros(shape)) | |
self.assertEqual(len(layer.get_weights()), 0) | |
self.assertListEqual(output.get_shape().as_list(), shape) | |
if __name__ == '__main__': | |
tf.test.main() | |