Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for transformer_layers.""" | |
import tensorflow as tf | |
from deeplab2.model.layers import dual_path_transformer | |
class TransformerLayersTest(tf.test.TestCase): | |
def test_default_attention_operation_output_shape(self): | |
layer = dual_path_transformer.AttentionOperation( | |
'attention', 'relu', 'softmax') | |
output = layer((tf.zeros([2, 8, 4225, 127]), | |
tf.zeros([2, 8, 422, 127]), | |
tf.zeros([2, 422, 8, 128]))) | |
self.assertListEqual(output.get_shape().as_list(), [2, 4225, 1024]) | |
def test_default_transformer_layer_output_shape(self): | |
layer = dual_path_transformer.DualPathTransformerLayer() | |
float_training_tensor = tf.constant(0.0, dtype=tf.float32) | |
output = layer((tf.zeros([2, 4225, 126]), | |
tf.zeros([2, 127, 128]), | |
float_training_tensor)) | |
self.assertListEqual(output[0].get_shape().as_list(), [2, 4225, 126]) | |
self.assertListEqual(output[1].get_shape().as_list(), [2, 4225, 126]) | |
self.assertListEqual(output[2].get_shape().as_list(), [2, 127, 128]) | |
def test_zero_feed_forward_network_output_shape(self): | |
layer = dual_path_transformer.DualPathTransformerLayer( | |
feed_forward_network_channels=0) | |
float_training_tensor = tf.constant(0.0, dtype=tf.float32) | |
output = layer((tf.zeros([2, 4225, 128]), | |
tf.zeros([2, 128, 128]), | |
float_training_tensor)) | |
self.assertListEqual(output[0].get_shape().as_list(), [2, 4225, 128]) | |
self.assertListEqual(output[1].get_shape().as_list(), [2, 4225, 128]) | |
self.assertListEqual(output[2].get_shape().as_list(), [2, 128, 128]) | |
def test_attention_types_output_shape(self): | |
layer = dual_path_transformer.DualPathTransformerLayer( | |
use_memory_self_attention=False, | |
use_pixel2memory_feedback_attention=False) | |
float_training_tensor = tf.constant(0.0, dtype=tf.float32) | |
output = layer((tf.zeros([2, 4225, 128]), | |
tf.zeros([2, 128, 128]), | |
float_training_tensor)) | |
self.assertListEqual(output[0].get_shape().as_list(), [2, 4225, 128]) | |
self.assertListEqual(output[1].get_shape().as_list(), [2, 4225, 128]) | |
self.assertListEqual(output[2].get_shape().as_list(), [2, 128, 128]) | |
if __name__ == '__main__': | |
tf.test.main() | |