Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""This file contains wrapper classes for convolution layers of tf.keras and Switchable Atrous Convolution. | |
Switchable Atrous Convolution (SAC) is convolution with a switchable atrous | |
rate. It also has optional pre- and post-global context layers. | |
[1] Siyuan Qiao, Liang-Chieh Chen, Alan Yuille. DetectoRS: Detecting Objects | |
with Recursive Feature Pyramid and Switchable Atrous Convolution. | |
arXiv:2006.02334 | |
""" | |
import functools | |
from typing import Optional | |
from absl import logging | |
import tensorflow as tf | |
from deeplab2.model import utils | |
from deeplab2.model.layers import activations | |
def _compute_padding_size(kernel_size, atrous_rate): | |
kernel_size_effective = kernel_size + (kernel_size - 1) * (atrous_rate - 1) | |
pad_total = kernel_size_effective - 1 | |
pad_begin = pad_total // 2 | |
pad_end = pad_total - pad_begin | |
if pad_begin != pad_end: | |
logging.warn('Convolution requires one more padding to the ' | |
'bottom-right pixel. This may cause misalignment.') | |
return (pad_begin, pad_end) | |
class GlobalContext(tf.keras.layers.Layer): | |
"""Class for the global context modules in Switchable Atrous Convolution.""" | |
def build(self, input_shape): | |
super().build(input_shape) | |
input_shape = tf.TensorShape(input_shape) | |
input_channel = self._get_input_channel(input_shape) | |
self.global_average_pooling = tf.keras.layers.GlobalAveragePooling2D() | |
self.convolution = tf.keras.layers.Conv2D( | |
input_channel, 1, strides=1, padding='same', name=self.name + '_conv', | |
kernel_initializer='zeros', bias_initializer='zeros') | |
def call(self, inputs, *args, **kwargs): | |
outputs = self.global_average_pooling(inputs) | |
outputs = tf.expand_dims(outputs, axis=1) | |
outputs = tf.expand_dims(outputs, axis=1) | |
outputs = self.convolution(outputs) | |
return inputs + outputs | |
def _get_input_channel(self, input_shape): | |
# Reference: tf.keras.layers.convolutional.Conv. | |
if input_shape.dims[-1].value is None: | |
raise ValueError('The channel dimension of the inputs ' | |
'should be defined. Found `None`.') | |
return int(input_shape[-1]) | |
class SwitchableAtrousConvolution(tf.keras.layers.Conv2D): | |
"""Class for the Switchable Atrous Convolution.""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self._average_pool = tf.keras.layers.AveragePooling2D( | |
pool_size=(5, 5), strides=1, padding='same') | |
self._switch = tf.keras.layers.Conv2D( | |
1, | |
kernel_size=1, | |
strides=self.strides, | |
padding='same', | |
dilation_rate=1, | |
name='switch', | |
kernel_initializer='zeros', | |
bias_initializer='zeros') | |
def build(self, input_shape): | |
super().build(input_shape) | |
if self.padding == 'causal': | |
tf_padding = 'VALID' | |
elif isinstance(self.padding, str): | |
tf_padding = self.padding.upper() | |
else: | |
tf_padding = self.padding | |
large_dilation_rate = list(self.dilation_rate) | |
large_dilation_rate = [r * 3 for r in large_dilation_rate] | |
self._large_convolution_op = functools.partial( | |
tf.nn.convolution, | |
strides=list(self.strides), | |
padding=tf_padding, | |
dilations=large_dilation_rate, | |
data_format=self._tf_data_format, | |
name=self.__class__.__name__ + '_large') | |
def call(self, inputs): | |
# Reference: tf.keras.layers.convolutional.Conv. | |
input_shape = inputs.shape | |
switches = self._switch(self._average_pool(inputs)) | |
if self._is_causal: # Apply causal padding to inputs for Conv1D. | |
inputs = tf.compat.v1.pad(inputs, self._compute_causal_padding(inputs)) | |
outputs = self._convolution_op(inputs, self.kernel) | |
outputs_large = self._large_convolution_op(inputs, self.kernel) | |
outputs = switches * outputs_large + (1 - switches) * outputs | |
if self.use_bias: | |
outputs = tf.nn.bias_add( | |
outputs, self.bias, data_format=self._tf_data_format) | |
if not tf.executing_eagerly(): | |
# Infer the static output shape: | |
out_shape = self.compute_output_shape(input_shape) | |
outputs.set_shape(out_shape) | |
if self.activation is not None: | |
return self.activation(outputs) | |
return outputs | |
def squeeze_batch_dims(self, inp, op, inner_rank): | |
# Reference: tf.keras.utils.conv_utils.squeeze_batch_dims. | |
with tf.name_scope('squeeze_batch_dims'): | |
shape = inp.shape | |
inner_shape = shape[-inner_rank:] | |
if not inner_shape.is_fully_defined(): | |
inner_shape = tf.compat.v1.shape(inp)[-inner_rank:] | |
batch_shape = shape[:-inner_rank] | |
if not batch_shape.is_fully_defined(): | |
batch_shape = tf.compat.v1.shape(inp)[:-inner_rank] | |
if isinstance(inner_shape, tf.TensorShape): | |
inp_reshaped = tf.reshape(inp, [-1] + inner_shape.as_list()) | |
else: | |
inp_reshaped = tf.reshape( | |
inp, tf.concat(([-1], inner_shape), axis=-1)) | |
out_reshaped = op(inp_reshaped) | |
out_inner_shape = out_reshaped.shape[-inner_rank:] | |
if not out_inner_shape.is_fully_defined(): | |
out_inner_shape = tf.compat.v1.shape(out_reshaped)[-inner_rank:] | |
out = tf.reshape( | |
out_reshaped, tf.concat((batch_shape, out_inner_shape), axis=-1)) | |
out.set_shape(inp.shape[:-inner_rank] + out.shape[-inner_rank:]) | |
return out | |
class Conv2DSame(tf.keras.layers.Layer): | |
"""A wrapper class for a 2D convolution with 'same' padding. | |
In contrast to tf.keras.layers.Conv2D, this layer aligns the kernel with the | |
top-left corner rather than the bottom-right corner. Optionally, a batch | |
normalization and an activation can be added on top. | |
""" | |
def __init__( | |
self, | |
output_channels: int, | |
kernel_size: int, | |
name: str, | |
strides: int = 1, | |
atrous_rate: int = 1, | |
use_bias: bool = True, | |
use_bn: bool = False, | |
bn_layer: tf.keras.layers.Layer = tf.keras.layers.BatchNormalization, | |
bn_gamma_initializer: str = 'ones', | |
activation: Optional[str] = None, | |
use_switchable_atrous_conv: bool = False, | |
use_global_context_in_sac: bool = False, | |
conv_kernel_weight_decay: float = 0.0): | |
"""Initializes convolution with zero padding aligned to the top-left corner. | |
DeepLab aligns zero padding differently to tf.keras 'same' padding. | |
Considering a convolution with a 7x7 kernel, a stride of 2 and an even input | |
size, tf.keras 'same' padding will add 2 zero padding to the top-left and 3 | |
zero padding to the bottom-right. However, for consistent feature alignment, | |
DeepLab requires an equal padding of 3 in all directions. This behavior is | |
consistent with e.g. the ResNet 'stem' block. | |
Args: | |
output_channels: An integer specifying the number of filters of the | |
convolution. | |
kernel_size: An integer specifying the size of the convolution kernel. | |
name: A string specifying the name of this layer. | |
strides: An optional integer or tuple of integers specifying the size of | |
the strides (default: 1). | |
atrous_rate: An optional integer or tuple of integers specifying the | |
atrous rate of the convolution (default: 1). | |
use_bias: An optional flag specifying whether bias should be added for the | |
convolution. | |
use_bn: An optional flag specifying whether batch normalization should be | |
added after the convolution (default: False). | |
bn_layer: An optional tf.keras.layers.Layer that computes the | |
normalization (default: tf.keras.layers.BatchNormalization). | |
bn_gamma_initializer: An initializer for the batch norm gamma weight. | |
activation: An optional flag specifying an activation function to be added | |
after the convolution. | |
use_switchable_atrous_conv: Boolean, whether the layer uses switchable | |
atrous convolution. | |
use_global_context_in_sac: Boolean, whether the switchable atrous | |
convolution (SAC) uses pre- and post-global context. | |
conv_kernel_weight_decay: A float, the weight decay for convolution | |
kernels. | |
Raises: | |
ValueError: If use_bias and use_bn in the convolution. | |
""" | |
super(Conv2DSame, self).__init__(name=name) | |
if use_bn and use_bias: | |
raise ValueError('Conv2DSame is using convolution bias with batch_norm.') | |
if use_global_context_in_sac: | |
self._pre_global_context = GlobalContext(name='pre_global_context') | |
convolution_op = tf.keras.layers.Conv2D | |
convolution_padding = 'same' | |
if strides == 1 or strides == (1, 1): | |
if use_switchable_atrous_conv: | |
convolution_op = SwitchableAtrousConvolution | |
else: | |
padding = _compute_padding_size(kernel_size, atrous_rate) | |
self._zeropad = tf.keras.layers.ZeroPadding2D( | |
padding=(padding, padding), name='zeropad') | |
convolution_padding = 'valid' | |
self._conv = convolution_op( | |
output_channels, | |
kernel_size, | |
strides=strides, | |
padding=convolution_padding, | |
use_bias=use_bias, | |
dilation_rate=atrous_rate, | |
name='conv', | |
kernel_initializer='he_normal', | |
kernel_regularizer=tf.keras.regularizers.l2( | |
conv_kernel_weight_decay)) | |
if use_global_context_in_sac: | |
self._post_global_context = GlobalContext(name='post_global_context') | |
if use_bn: | |
self._batch_norm = bn_layer(axis=3, name='batch_norm', | |
gamma_initializer=bn_gamma_initializer) | |
self._activation_fn = None | |
if activation is not None: | |
self._activation_fn = activations.get_activation(activation) | |
self._use_global_context_in_sac = use_global_context_in_sac | |
self._strides = strides | |
self._use_bn = use_bn | |
def call(self, input_tensor, training=False): | |
"""Performs a forward pass. | |
Args: | |
input_tensor: An input tensor of type tf.Tensor with shape [batch, height, | |
width, channels]. | |
training: A boolean flag indicating whether training behavior should be | |
used (default: False). | |
Returns: | |
The output tensor. | |
""" | |
x = input_tensor | |
if self._use_global_context_in_sac: | |
x = self._pre_global_context(x) | |
if not (self._strides == 1 or self._strides == (1, 1)): | |
x = self._zeropad(x) | |
x = self._conv(x) | |
if self._use_global_context_in_sac: | |
x = self._post_global_context(x) | |
if self._use_bn: | |
x = self._batch_norm(x, training=training) | |
if self._activation_fn is not None: | |
x = self._activation_fn(x) | |
return x | |
class DepthwiseConv2DSame(tf.keras.layers.Layer): | |
"""A wrapper class for a 2D depthwise convolution. | |
In contrast to convolutions in tf.keras.layers.DepthwiseConv2D, this layers | |
aligns the kernel with the top-left corner rather than the bottom-right | |
corner. Optionally, a batch normalization and an activation can be added. | |
""" | |
def __init__(self, | |
kernel_size: int, | |
name: str, | |
strides: int = 1, | |
atrous_rate: int = 1, | |
use_bias: bool = True, | |
use_bn: bool = False, | |
bn_layer=tf.keras.layers.BatchNormalization, | |
activation: Optional[str] = None): | |
"""Initializes a 2D depthwise convolution. | |
Args: | |
kernel_size: An integer specifying the size of the convolution kernel. | |
name: A string specifying the name of this layer. | |
strides: An optional integer or tuple of integers specifying the size of | |
the strides (default: 1). | |
atrous_rate: An optional integer or tuple of integers specifying the | |
atrous rate of the convolution (default: 1). | |
use_bias: An optional flag specifying whether bias should be added for the | |
convolution. | |
use_bn: An optional flag specifying whether batch normalization should be | |
added after the convolution (default: False). | |
bn_layer: An optional tf.keras.layers.Layer that computes the | |
normalization (default: tf.keras.layers.BatchNormalization). | |
activation: An optional flag specifying an activation function to be added | |
after the convolution. | |
Raises: | |
ValueError: If use_bias and use_bn in the convolution. | |
""" | |
super(DepthwiseConv2DSame, self).__init__(name=name) | |
if use_bn and use_bias: | |
raise ValueError( | |
'DepthwiseConv2DSame is using convlution bias with batch_norm.') | |
if strides == 1 or strides == (1, 1): | |
convolution_padding = 'same' | |
else: | |
padding = _compute_padding_size(kernel_size, atrous_rate) | |
self._zeropad = tf.keras.layers.ZeroPadding2D( | |
padding=(padding, padding), name='zeropad') | |
convolution_padding = 'valid' | |
self._depthwise_conv = tf.keras.layers.DepthwiseConv2D( | |
kernel_size=kernel_size, | |
strides=strides, | |
padding=convolution_padding, | |
use_bias=use_bias, | |
dilation_rate=atrous_rate, | |
name='depthwise_conv') | |
if use_bn: | |
self._batch_norm = bn_layer(axis=3, name='batch_norm') | |
self._activation_fn = None | |
if activation is not None: | |
self._activation_fn = activations.get_activation(activation) | |
self._strides = strides | |
self._use_bn = use_bn | |
def call(self, input_tensor, training=False): | |
"""Performs a forward pass. | |
Args: | |
input_tensor: An input tensor of type tf.Tensor with shape [batch, height, | |
width, channels]. | |
training: A boolean flag indicating whether training behavior should be | |
used (default: False). | |
Returns: | |
The output tensor. | |
""" | |
x = input_tensor | |
if not (self._strides == 1 or self._strides == (1, 1)): | |
x = self._zeropad(x) | |
x = self._depthwise_conv(x) | |
if self._use_bn: | |
x = self._batch_norm(x, training=training) | |
if self._activation_fn is not None: | |
x = self._activation_fn(x) | |
return x | |
class SeparableConv2DSame(tf.keras.layers.Layer): | |
"""A wrapper class for a 2D separable convolution. | |
In contrast to convolutions in tf.keras.layers.SeparableConv2D, this layers | |
aligns the kernel with the top-left corner rather than the bottom-right | |
corner. Optionally, a batch normalization and an activation can be added. | |
""" | |
def __init__( | |
self, | |
output_channels: int, | |
kernel_size: int, | |
name: str, | |
strides: int = 1, | |
atrous_rate: int = 1, | |
use_bias: bool = True, | |
use_bn: bool = False, | |
bn_layer: tf.keras.layers.Layer = tf.keras.layers.BatchNormalization, | |
activation: Optional[str] = None): | |
"""Initializes a 2D separable convolution. | |
Args: | |
output_channels: An integer specifying the number of filters of the | |
convolution output. | |
kernel_size: An integer specifying the size of the convolution kernel. | |
name: A string specifying the name of this layer. | |
strides: An optional integer or tuple of integers specifying the size of | |
the strides (default: 1). | |
atrous_rate: An optional integer or tuple of integers specifying the | |
atrous rate of the convolution (default: 1). | |
use_bias: An optional flag specifying whether bias should be added for the | |
convolution. | |
use_bn: An optional flag specifying whether batch normalization should be | |
added after the convolution (default: False). | |
bn_layer: An optional tf.keras.layers.Layer that computes the | |
normalization (default: tf.keras.layers.BatchNormalization). | |
activation: An optional flag specifying an activation function to be added | |
after the convolution. | |
Raises: | |
ValueError: If use_bias and use_bn in the convolution. | |
""" | |
super(SeparableConv2DSame, self).__init__(name=name) | |
if use_bn and use_bias: | |
raise ValueError( | |
'SeparableConv2DSame is using convolution bias with batch_norm.') | |
self._depthwise = DepthwiseConv2DSame( | |
kernel_size=kernel_size, | |
name='depthwise', | |
strides=strides, | |
atrous_rate=atrous_rate, | |
use_bias=use_bias, | |
use_bn=use_bn, | |
bn_layer=bn_layer, | |
activation=activation) | |
self._pointwise = Conv2DSame( | |
output_channels=output_channels, | |
kernel_size=1, | |
name='pointwise', | |
strides=1, | |
atrous_rate=1, | |
use_bias=use_bias, | |
use_bn=use_bn, | |
bn_layer=bn_layer, | |
activation=activation) | |
def call(self, input_tensor, training=False): | |
"""Performs a forward pass. | |
Args: | |
input_tensor: An input tensor of type tf.Tensor with shape [batch, height, | |
width, channels]. | |
training: A boolean flag indicating whether training behavior should be | |
used (default: False). | |
Returns: | |
The output tensor. | |
""" | |
x = self._depthwise(input_tensor, training=training) | |
return self._pointwise(x, training=training) | |
class StackedConv2DSame(tf.keras.layers.Layer): | |
"""Stacked Conv2DSame or SeparableConv2DSame. | |
This class sequentially stacks a given number of Conv2DSame layers or | |
SeparableConv2DSame layers. | |
""" | |
def __init__( | |
self, | |
num_layers: int, | |
conv_type: str, | |
output_channels: int, | |
kernel_size: int, | |
name: str, | |
strides: int = 1, | |
atrous_rate: int = 1, | |
use_bias: bool = True, | |
use_bn: bool = False, | |
bn_layer: tf.keras.layers.Layer = tf.keras.layers.BatchNormalization, | |
activation: Optional[str] = None): | |
"""Initializes a stack of convolutions. | |
Args: | |
num_layers: The number of convolutions to create. | |
conv_type: A string specifying the convolution type used in each block. | |
Must be one of 'standard_conv' or 'depthwise_separable_conv'. | |
output_channels: An integer specifying the number of filters of the | |
convolution output. | |
kernel_size: An integer specifying the size of the convolution kernel. | |
name: A string specifying the name of this layer. | |
strides: An optional integer or tuple of integers specifying the size of | |
the strides (default: 1). | |
atrous_rate: An optional integer or tuple of integers specifying the | |
atrous rate of the convolution (default: 1). | |
use_bias: An optional flag specifying whether bias should be added for the | |
convolution. | |
use_bn: An optional flag specifying whether batch normalization should be | |
added after the convolution (default: False). | |
bn_layer: An optional tf.keras.layers.Layer that computes the | |
normalization (default: tf.keras.layers.BatchNormalization). | |
activation: An optional flag specifying an activation function to be added | |
after the convolution. | |
Raises: | |
ValueError: An error occurs when conv_type is neither 'standard_conv' | |
nor 'depthwise_separable_conv'. | |
""" | |
super(StackedConv2DSame, self).__init__(name=name) | |
if conv_type == 'standard_conv': | |
convolution_op = Conv2DSame | |
elif conv_type == 'depthwise_separable_conv': | |
convolution_op = SeparableConv2DSame | |
else: | |
raise ValueError('Convolution %s not supported.' % conv_type) | |
for index in range(num_layers): | |
current_name = utils.get_conv_bn_act_current_name(index, use_bn, | |
activation) | |
utils.safe_setattr(self, current_name, convolution_op( | |
output_channels=output_channels, | |
kernel_size=kernel_size, | |
name=utils.get_layer_name(current_name), | |
strides=strides, | |
atrous_rate=atrous_rate, | |
use_bias=use_bias, | |
use_bn=use_bn, | |
bn_layer=bn_layer, | |
activation=activation)) | |
self._num_layers = num_layers | |
self._use_bn = use_bn | |
self._activation = activation | |
def call(self, input_tensor, training=False): | |
"""Performs a forward pass. | |
Args: | |
input_tensor: An input tensor of type tf.Tensor with shape [batch, height, | |
width, channels]. | |
training: A boolean flag indicating whether training behavior should be | |
used (default: False). | |
Returns: | |
The output tensor. | |
""" | |
x = input_tensor | |
for index in range(self._num_layers): | |
current_name = utils.get_conv_bn_act_current_name(index, self._use_bn, | |
self._activation) | |
x = getattr(self, current_name)(x, training=training) | |
return x | |
class Conv1D(tf.keras.layers.Layer): | |
"""A wrapper class for a 1D convolution with batch norm and activation. | |
Conv1D creates a convolution kernel that is convolved with the layer input | |
over a single spatial (or temporal) dimension to produce a tensor of outputs. | |
The input should always be 3D with shape [batch, length, channel], so | |
accordingly, the optional batch norm is done on axis=2. | |
In DeepLab, we use Conv1D only with kernel_size = 1 for dual path transformer | |
layers in MaX-DeepLab [1] architectures. | |
Reference: | |
[1] MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers, | |
CVPR 2021. | |
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen. | |
""" | |
def __init__( | |
self, | |
output_channels: int, | |
name: str, | |
use_bias: bool = True, | |
use_bn: bool = False, | |
bn_layer: tf.keras.layers.Layer = tf.keras.layers.BatchNormalization, | |
bn_gamma_initializer: str = 'ones', | |
activation: Optional[str] = None, | |
conv_kernel_weight_decay: float = 0.0, | |
kernel_initializer='he_normal', | |
kernel_size: int = 1, | |
padding: str = 'valid'): | |
"""Initializes a Conv1D. | |
Args: | |
output_channels: An integer specifying the number of filters of the | |
convolution. | |
name: A string specifying the name of this layer. | |
use_bias: An optional flag specifying whether bias should be added for the | |
convolution. | |
use_bn: An optional flag specifying whether batch normalization should be | |
added after the convolution (default: False). | |
bn_layer: An optional tf.keras.layers.Layer that computes the | |
normalization (default: tf.keras.layers.BatchNormalization). | |
bn_gamma_initializer: An initializer for the batch norm gamma weight. | |
activation: An optional flag specifying an activation function to be added | |
after the convolution. | |
conv_kernel_weight_decay: A float, the weight decay for convolution | |
kernels. | |
kernel_initializer: An initializer for the convolution kernel. | |
kernel_size: An integer specifying the size of the convolution kernel. | |
padding: An optional string specifying the padding to use. Must be either | |
'same' or 'valid' (default: 'valid'). | |
Raises: | |
ValueError: If use_bias and use_bn in the convolution. | |
""" | |
super(Conv1D, self).__init__(name=name) | |
if use_bn and use_bias: | |
raise ValueError('Conv1D is using convlution bias with batch_norm.') | |
self._conv = tf.keras.layers.Conv1D( | |
output_channels, | |
kernel_size=kernel_size, | |
strides=1, | |
padding=padding, | |
use_bias=use_bias, | |
name='conv', | |
kernel_initializer=kernel_initializer, | |
kernel_regularizer=tf.keras.regularizers.l2( | |
conv_kernel_weight_decay)) | |
self._batch_norm = None | |
if use_bn: | |
# Batch norm uses axis=2 because the input is 3D with channel being the | |
# last dimension. | |
self._batch_norm = bn_layer(axis=2, name='batch_norm', | |
gamma_initializer=bn_gamma_initializer) | |
self._activation_fn = None | |
if activation is not None: | |
self._activation_fn = activations.get_activation(activation) | |
def call(self, input_tensor, training=False): | |
"""Performs a forward pass. | |
Args: | |
input_tensor: An input tensor of type tf.Tensor with shape [batch, length, | |
channels]. | |
training: A boolean flag indicating whether training behavior should be | |
used (default: False). | |
Returns: | |
The output tensor. | |
""" | |
x = self._conv(input_tensor) | |
if self._batch_norm is not None: | |
x = self._batch_norm(x, training=training) | |
if self._activation_fn is not None: | |
x = self._activation_fn(x) | |
return x | |