Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for axial_block_groups.""" | |
import numpy as np | |
import tensorflow as tf | |
from deeplab2.model import test_utils | |
from deeplab2.model.layers import axial_block_groups | |
class AxialBlockGroupsTest(tf.test.TestCase): | |
def test_axial_attention_follows_bottleneck_block(self): | |
layer = axial_block_groups.BlockGroup( | |
filters=512, | |
num_blocks=2, | |
name='block_group', | |
original_resnet_stride=2, | |
original_resnet_input_stride=16, | |
use_axial_beyond_stride=32, | |
output_stride=16) | |
_, pixel_output, memory_output = layer((tf.zeros([2, 65, 65, 1024]), | |
tf.zeros([2, 128, 147]))) | |
self.assertListEqual(pixel_output.get_shape().as_list(), | |
[2, 65, 65, 2048]) | |
self.assertListEqual(memory_output.get_shape().as_list(), | |
[2, 128, 147]) | |
def test_global_attention_follows_basic_block(self): | |
layer = axial_block_groups.BlockGroup( | |
filters=256, | |
num_blocks=2, | |
name='block_group', | |
backbone_type='wider_resnet', | |
original_resnet_stride=2, | |
original_resnet_input_stride=8, | |
use_global_beyond_stride=16, | |
positional_encoding_type='1D') | |
_, pixel_output, memory_output = layer((tf.zeros([2, 65, 65, 32]), | |
tf.zeros([2, 128, 147]))) | |
self.assertListEqual(pixel_output.get_shape().as_list(), | |
[2, 33, 33, 1024]) | |
self.assertListEqual(memory_output.get_shape().as_list(), | |
[2, 128, 147]) | |
def test_atrous_consistency_basic_block(self): | |
tf.random.set_seed(0) | |
pixel_inputs = test_utils.create_test_input(2, 11, 11, 3) | |
# Dense feature extraction followed by subsampling. | |
layer1 = axial_block_groups.BlockGroup( | |
filters=2, | |
num_blocks=2, | |
name='stage3', | |
backbone_type='wider_resnet', | |
original_resnet_stride=2, | |
original_resnet_input_stride=8, | |
output_stride=8, | |
use_axial_beyond_stride=0, | |
use_global_beyond_stride=0, | |
use_transformer_beyond_stride=0) | |
# Create the weights | |
layer1((pixel_inputs, None)) | |
weights = layer1.get_weights() | |
# Set the batch norm gamma as non-zero so that the 3x3 convolution affects | |
# the output. | |
for index in range(len(weights)): | |
if np.sum(weights[index]) == 0.0: | |
weights[index] = weights[index] + 1 | |
layer1.set_weights(weights) | |
_, pixel_outputs, _ = layer1((pixel_inputs, None)) | |
output = pixel_outputs[:, ::2, ::2, :] | |
# Feature extraction at the nominal network rate. | |
layer2 = axial_block_groups.BlockGroup( | |
filters=2, | |
num_blocks=2, | |
name='stage3', | |
backbone_type='wider_resnet', | |
original_resnet_stride=2, | |
original_resnet_input_stride=8, | |
output_stride=16, | |
use_axial_beyond_stride=0, | |
use_global_beyond_stride=0, | |
use_transformer_beyond_stride=0) | |
# Create the weights | |
layer2((pixel_inputs, None)) | |
# Make the two networks use the same weights. | |
layer2.set_weights(layer1.get_weights()) | |
_, expected, _ = layer2((pixel_inputs, None)) | |
self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) | |
def test_atrous_consistency_bottleneck_block(self): | |
tf.random.set_seed(0) | |
pixel_inputs = test_utils.create_test_input(2, 11, 11, 3) | |
# Dense feature extraction followed by subsampling. | |
layer1 = axial_block_groups.BlockGroup( | |
filters=2, | |
num_blocks=2, | |
name='stage3', | |
backbone_type='wider_resnet', | |
original_resnet_stride=2, | |
original_resnet_input_stride=16, | |
output_stride=16, | |
use_axial_beyond_stride=0, | |
use_global_beyond_stride=0, | |
use_transformer_beyond_stride=0) | |
# Create the weights | |
layer1((pixel_inputs, None)) | |
weights = layer1.get_weights() | |
# Set the batch norm gamma as non-zero so that the 3x3 convolution affects | |
# the output. | |
for index in range(len(weights)): | |
if np.sum(weights[index]) == 0.0: | |
weights[index] = weights[index] + 1 | |
layer1.set_weights(weights) | |
_, pixel_outputs, _ = layer1((pixel_inputs, None)) | |
output = pixel_outputs[:, ::2, ::2, :] | |
# Feature extraction at the nominal network rate. | |
layer2 = axial_block_groups.BlockGroup( | |
filters=2, | |
num_blocks=2, | |
name='stage3', | |
backbone_type='wider_resnet', | |
original_resnet_stride=2, | |
original_resnet_input_stride=16, | |
output_stride=32, | |
use_axial_beyond_stride=0, | |
use_global_beyond_stride=0, | |
use_transformer_beyond_stride=0) | |
# Create the weights | |
layer2((pixel_inputs, None)) | |
# Make the two networks use the same weights. | |
layer2.set_weights(layer1.get_weights()) | |
_, expected, _ = layer2((pixel_inputs, None)) | |
self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) | |
def test_use_se_sac_recompute_drop_path_schedule(self): | |
_ = axial_block_groups.BlockGroup( | |
filters=512, | |
num_blocks=2, | |
name='block_group', | |
original_resnet_stride=2, | |
original_resnet_input_stride=8, | |
use_axial_beyond_stride=0, | |
use_squeeze_and_excite=True, # True | |
use_sac_beyond_stride=16, # True | |
recompute_within_stride=16, # True | |
drop_path_beyond_stride=16, | |
drop_path_schedule='linear', # 1.0, 0.85 | |
output_stride=16) | |
def test_nouse_se_sac_recompute_drop_path_schedule(self): | |
_ = axial_block_groups.BlockGroup( | |
filters=512, | |
num_blocks=2, | |
name='block_group', | |
original_resnet_stride=2, | |
original_resnet_input_stride=8, | |
use_axial_beyond_stride=0, | |
use_squeeze_and_excite=False, # False | |
use_sac_beyond_stride=32, # False | |
recompute_within_stride=8, # False | |
drop_path_beyond_stride=32, # 1.0, 1.0 | |
drop_path_schedule='constant', | |
output_stride=16) | |
if __name__ == '__main__': | |
tf.test.main() | |