Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for data_utils.""" | |
import io | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
from deeplab2.data import data_utils | |
def _encode_png_image(image): | |
"""Helper method to encode input image in PNG format.""" | |
buffer = io.BytesIO() | |
Image.fromarray(image).save(buffer, format='png') | |
return buffer.getvalue() | |
class DataUtilsTest(tf.test.TestCase): | |
def _create_test_image(self, height, width): | |
rng = np.random.RandomState(319281498) | |
return rng.randint(0, 255, size=(height, width, 3), dtype=np.uint8) | |
def test_encode_and_decode(self): | |
"""Checks decode created tf.Example for semantic segmentation.""" | |
test_image_height = 20 | |
test_image_width = 15 | |
filename = 'dummy' | |
image = self._create_test_image(test_image_height, test_image_width) | |
# Take the last channel as dummy label. | |
label = image[..., 0] | |
example = data_utils.create_tfexample( | |
image_data=_encode_png_image(image), | |
image_format='png', filename=filename, | |
label_data=_encode_png_image(label), label_format='png') | |
# Parse created example, expect getting identical results. | |
parser = data_utils.SegmentationDecoder(is_panoptic_dataset=False) | |
parsed_tensors = parser(example.SerializeToString()) | |
self.assertIn('image', parsed_tensors) | |
self.assertIn('image_name', parsed_tensors) | |
self.assertIn('label', parsed_tensors) | |
self.assertEqual(filename, parsed_tensors['image_name']) | |
np.testing.assert_array_equal(image, parsed_tensors['image'].numpy()) | |
# Decoded label is a 3-D array with last dimension of 1. | |
decoded_label = parsed_tensors['label'].numpy() | |
np.testing.assert_array_equal(label, decoded_label[..., 0]) | |
def test_encode_and_decode_panoptic(self): | |
test_image_height = 31 | |
test_image_width = 17 | |
filename = 'dummy' | |
image = self._create_test_image(test_image_height, test_image_width) | |
# Create dummy panoptic label in np.int32 dtype. | |
label = np.dot(image.astype(np.int32), [1, 256, 256 * 256]).astype(np.int32) | |
example = data_utils.create_tfexample( | |
image_data=_encode_png_image(image), | |
image_format='png', filename=filename, | |
label_data=label.tostring(), label_format='raw') | |
parser = data_utils.SegmentationDecoder(is_panoptic_dataset=True) | |
parsed_tensors = parser(example.SerializeToString()) | |
self.assertIn('image', parsed_tensors) | |
self.assertIn('image_name', parsed_tensors) | |
self.assertIn('label', parsed_tensors) | |
self.assertEqual(filename, parsed_tensors['image_name']) | |
np.testing.assert_array_equal(image, parsed_tensors['image'].numpy()) | |
# Decoded label is a 3-D array with last dimension of 1. | |
decoded_label = parsed_tensors['label'].numpy() | |
np.testing.assert_array_equal(label, decoded_label[..., 0]) | |
if __name__ == '__main__': | |
tf.test.main() | |