Spaces:
Runtime error
Runtime error
File size: 14,502 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains the ViP-DeepLab meta architecture."""
import collections
import functools
from typing import Any, Dict, Text, Tuple
from absl import logging
import tensorflow as tf
from deeplab2 import common
from deeplab2 import config_pb2
from deeplab2.data import dataset
from deeplab2.model import builder
from deeplab2.model import utils
from deeplab2.model.post_processor import post_processor_builder
from deeplab2.model.post_processor import vip_deeplab
_OFFSET_OUTPUT = 'offset'
class ViPDeepLab(tf.keras.Model):
"""This class represents the ViP-DeepLab meta architecture.
This class supports the architecture of ViP-DeepLab.
"""
def __init__(self, config: config_pb2.ExperimentOptions,
dataset_descriptor: dataset.DatasetDescriptor):
"""Initializes a ViP-DeepLab architecture.
Args:
config: A config_pb2.ExperimentOptions configuration.
dataset_descriptor: A dataset.DatasetDescriptor.
"""
super(ViPDeepLab, self).__init__(name='ViPDeepLab')
if config.trainer_options.solver_options.use_sync_batchnorm:
logging.info('Synchronized Batchnorm is used.')
bn_layer = functools.partial(
tf.keras.layers.experimental.SyncBatchNormalization,
momentum=config.trainer_options.solver_options.batchnorm_momentum,
epsilon=config.trainer_options.solver_options.batchnorm_epsilon)
else:
logging.info('Standard (unsynchronized) Batchnorm is used.')
bn_layer = functools.partial(
tf.keras.layers.BatchNormalization,
momentum=config.trainer_options.solver_options.batchnorm_momentum,
epsilon=config.trainer_options.solver_options.batchnorm_epsilon)
self._encoder = builder.create_encoder(
config.model_options.backbone,
bn_layer,
conv_kernel_weight_decay=(
config.trainer_options.solver_options.weight_decay / 2))
self._decoder = builder.create_decoder(config.model_options, bn_layer,
dataset_descriptor.ignore_label)
self._post_processor = post_processor_builder.get_post_processor(
config, dataset_descriptor)
pool_size = config.train_dataset_options.crop_size
output_stride = float(config.model_options.backbone.output_stride)
pool_size = tuple(
utils.scale_mutable_sequence(pool_size, 1.0 / output_stride))
logging.info('Setting pooling size to %s', pool_size)
self.set_pool_size(pool_size)
# Variables for multi-scale inference.
self._add_flipped_images = config.evaluator_options.add_flipped_images
if not config.evaluator_options.eval_scales:
self._eval_scales = [1.0]
else:
self._eval_scales = config.evaluator_options.eval_scales
self._label_divisor = dataset_descriptor.panoptic_label_divisor
def _inference(self, input_tensor: tf.Tensor, next_input_tensor: tf.Tensor,
training: bool) -> Dict[Text, Any]:
"""Performs an inference pass and returns raw predictions."""
_, input_h, input_w, _ = input_tensor.get_shape().as_list()
result_dict = collections.defaultdict(list)
# Evaluation mode where one could perform multi-scale inference.
scale_1_pool_size = self.get_pool_size()
logging.info('Eval with scales %s', self._eval_scales)
for eval_scale in self._eval_scales:
# Get the scaled images/pool_size for each scale.
scaled_images, scaled_pool_size = (
self._scale_images_and_pool_size(input_tensor,
list(scale_1_pool_size), eval_scale))
next_scaled_images, _ = (
self._scale_images_and_pool_size(next_input_tensor,
list(scale_1_pool_size), eval_scale))
# Update the ASPP pool size for different eval scales.
self.set_pool_size(tuple(scaled_pool_size))
logging.info('Eval scale %s; setting pooling size to %s', eval_scale,
scaled_pool_size)
pred_dict = self._decoder(
self._encoder(scaled_images, training=training),
self._encoder(next_scaled_images, training=training),
training=training)
pred_dict = self._resize_predictions(
pred_dict, target_h=input_h, target_w=input_w)
# Change the semantic logits to probabilities with softmax. Note
# one should remove semantic logits for faster inference. We still
# keep them since they will be used to compute evaluation loss.
pred_dict[common.PRED_SEMANTIC_PROBS_KEY] = tf.nn.softmax(
pred_dict[common.PRED_SEMANTIC_LOGITS_KEY])
# Store the predictions from each scale.
for output_type, output_value in pred_dict.items():
result_dict[output_type].append(output_value)
if self._add_flipped_images:
pred_dict_reverse = self._decoder(
self._encoder(tf.reverse(scaled_images, [2]), training=training),
self._encoder(
tf.reverse(next_scaled_images, [2]), training=training),
training=training)
pred_dict_reverse = self._resize_predictions(
pred_dict_reverse, target_h=input_h, target_w=input_w, reverse=True)
# Change the semantic logits to probabilities with softmax.
pred_dict_reverse[common.PRED_SEMANTIC_PROBS_KEY] = tf.nn.softmax(
pred_dict_reverse[common.PRED_SEMANTIC_LOGITS_KEY])
# Store the predictions from each scale.
for output_type, output_value in pred_dict_reverse.items():
result_dict[output_type].append(output_value)
# Set back the pool_size for scale 1.0, the original setting.
self.set_pool_size(tuple(scale_1_pool_size))
# Average results across scales.
for output_type, output_value in result_dict.items():
result_dict[output_type] = tf.reduce_mean(
tf.stack(output_value, axis=0), axis=0)
return result_dict
def call(self,
input_tensor: tf.Tensor,
training: bool = False) -> Dict[Text, Any]:
"""Performs a forward pass.
Args:
input_tensor: An input tensor of type tf.Tensor with shape [batch, height,
width, channels]. The input tensor should contain batches of RGB images
pairs. The channel dimension is expected to encode two RGB pixels.
training: A boolean flag indicating whether training behavior should be
used (default: False).
Returns:
A dictionary containing the results of the specified DeepLab architecture.
The results are bilinearly upsampled to input size before returning.
"""
# Normalize the input in the same way as Inception. We normalize it outside
# the encoder so that we can extend encoders to different backbones without
# copying the normalization to each encoder. We normalize it after data
# preprocessing because it is faster on TPUs than on host CPUs. The
# normalization should not increase TPU memory consumption because it does
# not require gradient.
input_tensor = input_tensor / 127.5 - 1.0
# Get the static spatial shape of the input tensor.
_, input_h, input_w, _ = input_tensor.get_shape().as_list()
# Splits the input_tensor into the current and the next frames.
input_tensor, next_input_tensor = tf.split(input_tensor, 2, axis=3)
if training:
encoder_features = self._encoder(input_tensor, training=training)
next_encoder_features = self._encoder(
next_input_tensor, training=training)
result_dict = self._decoder(
encoder_features, next_encoder_features, training=training)
result_dict = self._resize_predictions(
result_dict, target_h=input_h, target_w=input_w)
else:
result_dict = self._inference(input_tensor, next_input_tensor, training)
# To get panoptic prediction of the next frame, we reverse the
# input_tensor and next_input_tensor and use them as the input.
# The second input can be anything. In sequence evaluation, we can wait
# for the results of the next pair. Here, we need to compute the panoptic
# predictions of the next frame to do pair evaluation.
# pylint: disable=arguments-out-of-order
next_result_dict = self._inference(
next_input_tensor, input_tensor, training)
# Here, we horizontally concat the raw predictions of the current frame
# and the next frame to perform two-frame panoptic post-processing.
concat_result_dict = collections.defaultdict(list)
concat_result_dict[common.PRED_SEMANTIC_PROBS_KEY] = tf.concat([
result_dict[common.PRED_SEMANTIC_PROBS_KEY],
next_result_dict[common.PRED_SEMANTIC_PROBS_KEY]
],
axis=2)
concat_result_dict[common.PRED_CENTER_HEATMAP_KEY] = tf.concat([
result_dict[common.PRED_CENTER_HEATMAP_KEY],
tf.zeros_like(next_result_dict[common.PRED_CENTER_HEATMAP_KEY])
],
axis=2)
next_regression_y, next_regression_x = tf.split(
result_dict[common.PRED_NEXT_OFFSET_MAP_KEY],
num_or_size_splits=2,
axis=3)
# The predicted horizontal offsets of the next frame need to subtract the
# image width to point to the object centers in the current frame because
# the two frames are horizontally concatenated.
next_regression_x -= tf.constant(input_w, dtype=tf.float32)
next_regression = tf.concat([next_regression_y, next_regression_x],
axis=3)
concat_result_dict[common.PRED_OFFSET_MAP_KEY] = tf.concat(
[result_dict[common.PRED_OFFSET_MAP_KEY], next_regression], axis=2)
concat_result_dict.update(self._post_processor(concat_result_dict))
next_result_dict.update(self._post_processor(next_result_dict))
result_dict[common.PRED_NEXT_PANOPTIC_KEY] = next_result_dict[
common.PRED_PANOPTIC_KEY]
for result_key in [
common.PRED_PANOPTIC_KEY, common.PRED_SEMANTIC_KEY,
common.PRED_INSTANCE_KEY, common.PRED_INSTANCE_CENTER_KEY,
common.PRED_INSTANCE_SCORES_KEY
]:
result_dict[result_key], next_result_dict[result_key] = tf.split(
concat_result_dict[result_key], num_or_size_splits=2, axis=2)
result_dict[common.PRED_CONCAT_NEXT_PANOPTIC_KEY] = next_result_dict[
common.PRED_PANOPTIC_KEY]
result_dict[common.PRED_NEXT_PANOPTIC_KEY] = tf.numpy_function(
func=vip_deeplab.stitch_video_panoptic_prediction,
inp=[
result_dict[common.PRED_CONCAT_NEXT_PANOPTIC_KEY],
result_dict[common.PRED_NEXT_PANOPTIC_KEY], self._label_divisor
],
Tout=tf.int32)
result_dict[common.PRED_NEXT_PANOPTIC_KEY].set_shape(
result_dict[common.PRED_CONCAT_NEXT_PANOPTIC_KEY].get_shape())
if common.PRED_CENTER_HEATMAP_KEY in result_dict:
result_dict[common.PRED_CENTER_HEATMAP_KEY] = tf.squeeze(
result_dict[common.PRED_CENTER_HEATMAP_KEY], axis=3)
return result_dict
def reset_pooling_layer(self):
"""Resets the ASPP pooling layer to global average pooling."""
self._decoder.reset_pooling_layer()
def set_pool_size(self, pool_size: Tuple[int, int]):
"""Sets the pooling size of the ASPP pooling layer.
Args:
pool_size: A tuple specifying the pooling size of the ASPP pooling layer.
"""
self._decoder.set_pool_size(pool_size)
def get_pool_size(self):
return self._decoder.get_pool_size()
@property
def checkpoint_items(self) -> Dict[Text, Any]:
items = dict(encoder=self._encoder)
items.update(self._decoder.checkpoint_items)
return items
def _resize_predictions(self, result_dict, target_h, target_w, reverse=False):
"""Resizes predictions to the target height and width.
This function resizes the items in the result_dict to the target height and
width. The items are optionally reversed w.r.t width if `reverse` is True.
Args:
result_dict: A dictionary storing prediction results to be resized.
target_h: An integer, the target height.
target_w: An integer, the target width.
reverse: A boolean, reversing the prediction result w.r.t. width.
Returns:
Resized (or optionally reversed) result_dict.
"""
for key, value in result_dict.items():
if reverse:
value = tf.reverse(value, [2])
# Special care to offsets: need to flip x-offsets.
if _OFFSET_OUTPUT in key:
offset_y, offset_x = tf.split(
value=value, num_or_size_splits=2, axis=3)
offset_x *= -1
value = tf.concat([offset_y, offset_x], 3)
if _OFFSET_OUTPUT in key:
result_dict[key] = utils.resize_and_rescale_offsets(
value, [target_h, target_w])
else:
result_dict[key] = utils.resize_bilinear(value, [target_h, target_w])
return result_dict
def _scale_images_and_pool_size(self, images, pool_size, scale):
"""Scales images and pool_size w.r.t.
scale.
Args:
images: An input tensor with shape [batch, height, width, 3].
pool_size: A list with two elements, specifying the pooling size of ASPP
pooling layer.
scale: A float, used to scale the input images and pool_size.
Returns:
Scaled images, and pool_size.
"""
if scale == 1.0:
scaled_images = images
scaled_pool_size = pool_size
else:
image_size = images.get_shape().as_list()[1:3]
scaled_image_size = utils.scale_mutable_sequence(image_size, scale)
scaled_images = utils.resize_bilinear(images, scaled_image_size)
scaled_pool_size = [None, None]
if pool_size != [None, None]:
scaled_pool_size = utils.scale_mutable_sequence(pool_size, scale)
return scaled_images, scaled_pool_size
|