Spaces:
Runtime error
Runtime error
File size: 7,823 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility script to perform net surgery on a model.
This script will perform net surgery on DeepLab models trained on a source
dataset and create a new checkpoint for the target dataset.
"""
from typing import Any, Dict, Text, Tuple
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf
from google.protobuf import text_format
from deeplab2 import common
from deeplab2 import config_pb2
from deeplab2.data import dataset
from deeplab2.model import deeplab
FLAGS = flags.FLAGS
flags.DEFINE_string('source_dataset', 'cityscapes',
'Dataset name on which the model has been pretrained. '
'Supported datasets: `cityscapes`.')
flags.DEFINE_string('target_dataset', 'motchallenge_step',
'Dataset name for conversion. Supported datasets: '
'`motchallenge_step`.')
flags.DEFINE_string('input_config_path', None,
'Path to a config file that defines the DeepLab model and '
'the checkpoint path.')
flags.DEFINE_string('output_checkpoint_path', None,
'Output filename for the generated checkpoint file.')
_SUPPORTED_SOURCE_DATASETS = {'cityscapes'}
_SUPPORTED_TARGET_DATASETS = {'motchallenge_step'}
_CITYSCAPES_TO_MOTCHALLENGE_STEP = (
1, # sidewalk
2, # building
8, # vegetation
10, # sky
11, # pedestrian
12, # rider
18, # bicycle
)
_DATASET_TO_INFO = {
'cityscapes': dataset.CITYSCAPES_PANOPTIC_INFORMATION,
'motchallenge_step': dataset.MOTCHALLENGE_STEP_INFORMATION,
}
_INPUT_SIZE = (1025, 2049, 3)
def _load_model(
config_path: Text,
source_dataset: Text) -> Tuple[deeplab.DeepLab,
config_pb2.ExperimentOptions]:
"""Load DeepLab model based on config and dataset."""
options = config_pb2.ExperimentOptions()
with tf.io.gfile.GFile(config_path) as f:
text_format.Parse(f.read(), options)
options.model_options.panoptic_deeplab.semantic_head.output_channels = (
_DATASET_TO_INFO[source_dataset].num_classes)
model = deeplab.DeepLab(options,
_DATASET_TO_INFO[source_dataset])
return model, options
def _convert_bias(input_tensor: np.ndarray,
label_list: Tuple[int, ...]) -> np.ndarray:
"""Converts 1D tensor bias w.r.t. label list.
We select the subsets from the input_tensor based on the label_list.
We assume input_tensor has shape = [num_classes], where
input_tensor is the bias weights trained on source dataset, and num_classes
is the number of classes in source dataset.
Args:
input_tensor: A numpy array with ndim == 1.
label_list: A tuple of labels used for net surgery.
Returns:
A numpy array with values modified.
Raises:
ValueError: input_tensor's ndim != 1.
"""
if input_tensor.ndim != 1:
raise ValueError('The bias tensor should have ndim == 1.')
num_elements = len(label_list)
output_tensor = np.zeros(num_elements, dtype=np.float32)
for i, label in enumerate(label_list):
output_tensor[i] = input_tensor[label]
return output_tensor
def _convert_kernels(input_tensor: np.ndarray,
label_list: Tuple[int, ...]) -> np.ndarray:
"""Converts 4D tensor kernels w.r.t. label list.
We select the subsets from the input_tensor based on the label_list.
We assume input_tensor has shape = [h, w, input_dim, num_classes], where
input_tensor is the kernel weights trained on source dataset, and num_classes
is the number of classes in source dataset.
Args:
input_tensor: A numpy array with ndim == 4.
label_list: A tuple of labels used for net surgery.
Returns:
A numpy array with values modified.
Raises:
ValueError: input_tensor's ndim != 4.
"""
if input_tensor.ndim != 4:
raise ValueError('The kernels tensor should have ndim == 4.')
num_elements = len(label_list)
kernel_height, kernel_width, input_dim, _ = input_tensor.shape
output_tensor = np.zeros(
(kernel_height, kernel_width, input_dim, num_elements), dtype=np.float32)
for i, label in enumerate(label_list):
output_tensor[:, :, :, i] = input_tensor[:, :, :, label]
return output_tensor
def _restore_checkpoint(restore_dict: Dict[Any, Any],
options: config_pb2.ExperimentOptions
) -> tf.train.Checkpoint:
"""Reads the provided dict items from the checkpoint specified in options.
Args:
restore_dict: A mapping of checkpoint item to location.
options: A experiment configuration containing the checkpoint location.
Returns:
The loaded checkpoint.
"""
ckpt = tf.train.Checkpoint(**restore_dict)
if tf.io.gfile.isdir(options.model_options.initial_checkpoint):
path = tf.train.latest_checkpoint(
options.model_options.initial_checkpoint)
status = ckpt.restore(path)
else:
status = ckpt.restore(options.model_options.initial_checkpoint)
status.expect_partial().assert_existing_objects_matched()
return ckpt
def main(_) -> None:
if FLAGS.source_dataset not in _SUPPORTED_SOURCE_DATASETS:
raise ValueError('Source dataset is not supported. Use --help to get list '
'of supported datasets.')
if FLAGS.target_dataset not in _SUPPORTED_TARGET_DATASETS:
raise ValueError('Target dataset is not supported. Use --help to get list '
'of supported datasets.')
logging.info('Loading DeepLab model from config %s', FLAGS.input_config_path)
source_model, options = _load_model(FLAGS.input_config_path,
FLAGS.source_dataset)
logging.info('Load pretrained checkpoint.')
_restore_checkpoint(source_model.checkpoint_items, options)
source_model(tf.keras.Input(_INPUT_SIZE), training=False)
logging.info('Perform net surgery.')
semantic_weights = (
source_model._decoder._semantic_head.final_conv.get_weights()) # pylint: disable=protected-access
if (FLAGS.source_dataset == 'cityscapes' and
FLAGS.target_dataset == 'motchallenge_step'):
# Kernels.
semantic_weights[0] = _convert_kernels(semantic_weights[0],
_CITYSCAPES_TO_MOTCHALLENGE_STEP)
# Bias.
semantic_weights[1] = _convert_bias(semantic_weights[1],
_CITYSCAPES_TO_MOTCHALLENGE_STEP)
logging.info('Load target model without last semantic layer.')
target_model, _ = _load_model(FLAGS.input_config_path, FLAGS.target_dataset)
restore_dict = target_model.checkpoint_items
del restore_dict[common.CKPT_SEMANTIC_LAST_LAYER]
ckpt = _restore_checkpoint(restore_dict, options)
target_model(tf.keras.Input(_INPUT_SIZE), training=False)
target_model._decoder._semantic_head.final_conv.set_weights(semantic_weights) # pylint: disable=protected-access
logging.info('Save checkpoint to output path: %s',
FLAGS.output_checkpoint_path)
ckpt = tf.train.Checkpoint(**target_model.checkpoint_items)
ckpt.save(FLAGS.output_checkpoint_path)
if __name__ == '__main__':
flags.mark_flags_as_required(
['input_config_path', 'output_checkpoint_path'])
app.run(main)
|