Spaces:
Runtime error
Runtime error
File size: 14,597 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Visualizes and stores results of a panoptic-deeplab model."""
import os.path
from typing import Any, Dict, List, Text
import numpy as np
import tensorflow as tf
from deeplab2 import common
from deeplab2.data import coco_constants
from deeplab2.data import dataset
from deeplab2.trainer import vis_utils
# The format of the labels.
_IMAGE_FORMAT = '%06d_image'
_CENTER_LABEL_FORMAT = '%06d_center_label'
_OFFSET_LABEL_FORMAT = '%06d_offset_label'
_PANOPTIC_LABEL_FORMAT = '%06d_panoptic_label'
_SEMANTIC_LABEL_FORMAT = '%06d_semantic_label'
# The format of the predictions.
_INSTANCE_PREDICTION_FORMAT = '%06d_instance_prediction'
_CENTER_HEATMAP_PREDICTION_FORMAT = '%06d_center_prediction'
_OFFSET_PREDICTION_RGB_FORMAT = '%06d_offset_prediction_rgb'
_PANOPTIC_PREDICTION_FORMAT = '%06d_panoptic_prediction'
_SEMANTIC_PREDICTION_FORMAT = '%06d_semantic_prediction'
# The format of others.
_ANALYSIS_FORMAT = '%06d_semantic_error'
# Conversion from train id to eval id.
_CITYSCAPES_TRAIN_ID_TO_EVAL_ID = (
7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 0
)
_COCO_TRAIN_ID_TO_EVAL_ID = coco_constants.get_id_mapping_inverse()
def _convert_train_id_to_eval_id(
prediction: np.ndarray, dataset_name: str) -> np.ndarray:
"""Converts the predicted label for evaluation.
There are cases where the training labels are not equal to the evaluation
labels. This function is used to perform the conversion so that we could
evaluate the results on the evaluation server.
Args:
prediction: Semantic segmentation prediction.
dataset_name: Dataset name.
Returns:
Semantic segmentation prediction whose labels have been changed.
Raises:
ValueError: If the dataset is not supported.
"""
if 'cityscapes' in dataset_name:
train_id_to_eval_id = _CITYSCAPES_TRAIN_ID_TO_EVAL_ID
elif 'coco' in dataset_name:
train_id_to_eval_id = _COCO_TRAIN_ID_TO_EVAL_ID
else:
raise ValueError(
'Unsupported dataset %s for converting semantic class IDs.' %
dataset_name)
length = np.maximum(256, len(train_id_to_eval_id))
to_eval_id_map = np.zeros((length), dtype=prediction.dtype)
dataset_ids = np.asarray(
train_id_to_eval_id, dtype=prediction.dtype)
to_eval_id_map[:len(train_id_to_eval_id)] = dataset_ids
return to_eval_id_map[prediction]
def _get_fg_mask(label_map: np.ndarray, thing_list: List[int]) -> np.ndarray:
fg_mask = np.zeros_like(label_map, np.bool)
for class_id in np.unique(label_map):
if class_id in thing_list:
fg_mask = np.logical_or(fg_mask, np.equal(label_map, class_id))
fg_mask = np.expand_dims(fg_mask, axis=2)
return fg_mask.astype(np.int)
def store_raw_predictions(predictions: Dict[str, Any],
image_filename: tf.Tensor,
dataset_info: dataset.DatasetDescriptor,
save_dir: Text,
sequence: tf.Tensor,
raw_panoptic_format='two_channel_png',
convert_to_eval=True):
"""Stores raw predictions to the specified path.
Raw predictions are saved in the specified path with the specified
`raw_panoptic_format`. For the `raw_panoptic_format`, we currently
support `two_channel_png`, `three_channel_png` and `two_channel_numpy_array`.
Note that `two_channel_png` and `three_channel_png` could not encode large
values of semantic label and instance ID due to limited PNG channel size. In
such a case, use `raw_panoptic_format` = `two_channel_numpy_array` to save
the raw predictions as two channel numpy array (i.e., first channel encodes
the semantic class and the second channel the instance ID).
Args:
predictions: A dctionary with string keys and any content. Tensors under
common.PRED_SEMANTIC_KEY and common.PRED_PANOPTIC_KEY will be stored.
image_filename: A tf.Tensor containing the image filename.
dataset_info: A dataset.DatasetDescriptor specifying the dataset.
save_dir: A path to the folder to write the output to.
sequence: A tf.Tensor describing the sequence that the image belongs to.
raw_panoptic_format: A string specifying what format the panoptic output
should be stored. Supports:
- 'two_channel_png': The popular format, also supported by the official
COCO panoptic API (https://github.com/cocodataset/panopticapi), where
the saved PNG image contains R-channel for semantic labels and
G-channel for instance IDs.
- 'three_channel_png': A simple extension of the 'two_channel_png' format,
and is adopted in some video panoptic segmentation datasets (for
example, KITTI-STEP and MOTChallenge-STEP), where the saved PNG image
contains R-channel for semantic labels, G-channel for the values of
(instance ID // 256), and B-channel for (instance ID % 256).
- 'two_channel_numpy_array': A more flexible format (unconstrained by the
PNG channel size), where the panoptic predictions are saved as a numpy
array in the two channel format (i.e., first channel encodes the
semantic class and the second channel the instance ID).
convert_to_eval: A flag specyfing whether semantic class IDs should be
converted to cityscapes eval IDs. This is usefulfor the official test
sever evaluation.
Raises:
ValueError: An error occurs when semantic label or instance ID is larger
than the values supported by the 'two_channel_png' or 'three_channel_png'
format. Or, if the raw_panoptic_format is not supported.
"""
# Note: predictions[key] contains a tuple of length 1.
predictions = {key: predictions[key][0] for key in predictions}
predictions = vis_utils.squeeze_batch_dim_and_convert_to_numpy(predictions)
image_filename = image_filename.numpy().decode('utf-8')
image_filename = os.path.splitext(image_filename)[0]
# Store raw semantic prediction.
semantic_prediction = predictions[common.PRED_SEMANTIC_KEY]
if convert_to_eval:
semantic_prediction = _convert_train_id_to_eval_id(
semantic_prediction, dataset_info.dataset_name)
output_folder = os.path.join(save_dir, 'raw_semantic')
if dataset_info.is_video_dataset:
sequence = sequence.numpy().decode('utf-8')
output_folder = os.path.join(output_folder, sequence)
tf.io.gfile.makedirs(output_folder)
vis_utils.save_annotation(
semantic_prediction,
output_folder,
image_filename,
add_colormap=False)
if common.PRED_PANOPTIC_KEY in predictions:
# Save the predicted panoptic annotations in two-channel format, where the
# R-channel stores the semantic label while the G-channel stores the
# instance label.
panoptic_prediction = predictions[common.PRED_PANOPTIC_KEY]
panoptic_outputs = np.zeros(
(panoptic_prediction.shape[0], panoptic_prediction.shape[1], 3),
dtype=panoptic_prediction.dtype)
predicted_semantic_labels = (
panoptic_prediction // dataset_info.panoptic_label_divisor)
if convert_to_eval:
predicted_semantic_labels = _convert_train_id_to_eval_id(
predicted_semantic_labels, dataset_info.dataset_name)
predicted_instance_labels = predictions[
common.PRED_PANOPTIC_KEY] % dataset_info.panoptic_label_divisor
output_folder = os.path.join(save_dir, 'raw_panoptic')
if dataset_info.is_video_dataset:
output_folder = os.path.join(output_folder, sequence)
tf.io.gfile.makedirs(output_folder)
if raw_panoptic_format == 'two_channel_png':
if np.max(predicted_semantic_labels) > 255:
raise ValueError('Overflow: Semantic IDs greater 255 are not supported '
'for images of 8-bit. Please save output as numpy '
'arrays instead.')
if np.max(predicted_instance_labels) > 255:
raise ValueError(
'Overflow: Instance IDs greater 255 could not be encoded by '
'G channel. Please save output as numpy arrays instead.')
panoptic_outputs[:, :, 0] = predicted_semantic_labels
panoptic_outputs[:, :, 1] = predicted_instance_labels
vis_utils.save_annotation(panoptic_outputs,
output_folder,
image_filename,
add_colormap=False)
elif raw_panoptic_format == 'three_channel_png':
if np.max(predicted_semantic_labels) > 255:
raise ValueError('Overflow: Semantic IDs greater 255 are not supported '
'for images of 8-bit. Please save output as numpy '
'arrays instead.')
if np.max(predicted_instance_labels) > 65535:
raise ValueError(
'Overflow: Instance IDs greater 65535 could not be encoded by '
'G and B channels. Please save output as numpy arrays instead.')
panoptic_outputs[:, :, 0] = predicted_semantic_labels
panoptic_outputs[:, :, 1] = predicted_instance_labels // 256
panoptic_outputs[:, :, 2] = predicted_instance_labels % 256
vis_utils.save_annotation(panoptic_outputs,
output_folder,
image_filename,
add_colormap=False)
elif raw_panoptic_format == 'two_channel_numpy_array':
panoptic_outputs[:, :, 0] = predicted_semantic_labels
panoptic_outputs[:, :, 1] = predicted_instance_labels
with tf.io.gfile.GFile(
os.path.join(output_folder, image_filename + '.npy'), 'w') as f:
np.save(f, panoptic_outputs)
else:
raise ValueError(
'Unknown raw_panoptic_format %s.' % raw_panoptic_format)
def store_predictions(predictions: Dict[str, Any], inputs: Dict[str, Any],
image_id: int, dataset_info: dataset.DatasetDescriptor,
save_dir: Text):
"""Saves predictions and labels to the specified path."""
predictions = {key: predictions[key][0] for key in predictions}
predictions = vis_utils.squeeze_batch_dim_and_convert_to_numpy(predictions)
inputs = {key: inputs[key][0] for key in inputs}
del inputs[common.IMAGE_NAME]
inputs = vis_utils.squeeze_batch_dim_and_convert_to_numpy(inputs)
thing_list = dataset_info.class_has_instances_list
label_divisor = dataset_info.panoptic_label_divisor
colormap_name = dataset_info.colormap
# 1. Save image.
image = inputs[common.IMAGE]
vis_utils.save_annotation(
image,
save_dir,
_IMAGE_FORMAT % image_id,
add_colormap=False)
# 2. Save semantic predictions and semantic labels.
vis_utils.save_annotation(
predictions[common.PRED_SEMANTIC_KEY],
save_dir,
_SEMANTIC_PREDICTION_FORMAT % image_id,
add_colormap=True,
colormap_name=colormap_name)
vis_utils.save_annotation(
inputs[common.GT_SEMANTIC_RAW],
save_dir,
_SEMANTIC_LABEL_FORMAT % image_id,
add_colormap=True,
colormap_name=colormap_name)
if common.PRED_CENTER_HEATMAP_KEY in predictions:
# 3. Save center heatmap.
heatmap_pred = predictions[common.PRED_CENTER_HEATMAP_KEY]
heat_map_gt = inputs[common.GT_INSTANCE_CENTER_KEY]
vis_utils.save_annotation(
vis_utils.overlay_heatmap_on_image(
heatmap_pred,
image),
save_dir,
_CENTER_HEATMAP_PREDICTION_FORMAT % image_id,
add_colormap=False)
vis_utils.save_annotation(
vis_utils.overlay_heatmap_on_image(
heat_map_gt,
image),
save_dir,
_CENTER_LABEL_FORMAT % image_id,
add_colormap=False)
if common.PRED_OFFSET_MAP_KEY in predictions:
# 4. Save center offsets.
center_offset_prediction = predictions[common.PRED_OFFSET_MAP_KEY]
center_offset_prediction_rgb = vis_utils.flow_to_color(
center_offset_prediction)
semantic_prediction = predictions[common.PRED_SEMANTIC_KEY]
pred_fg_mask = _get_fg_mask(semantic_prediction, thing_list)
center_offset_prediction_rgb = (
center_offset_prediction_rgb * pred_fg_mask)
vis_utils.save_annotation(
center_offset_prediction_rgb,
save_dir,
_OFFSET_PREDICTION_RGB_FORMAT % image_id,
add_colormap=False)
center_offset_label = inputs[common.GT_INSTANCE_REGRESSION_KEY]
center_offset_label_rgb = vis_utils.flow_to_color(center_offset_label)
gt_fg_mask = _get_fg_mask(inputs[common.GT_SEMANTIC_RAW], thing_list)
center_offset_label_rgb = center_offset_label_rgb * gt_fg_mask
vis_utils.save_annotation(
center_offset_label_rgb,
save_dir,
_OFFSET_LABEL_FORMAT % image_id,
add_colormap=False)
if common.PRED_INSTANCE_KEY in predictions:
# 5. Save instance map.
vis_utils.save_annotation(
vis_utils.create_rgb_from_instance_map(
predictions[common.PRED_INSTANCE_KEY]),
save_dir,
_INSTANCE_PREDICTION_FORMAT % image_id,
add_colormap=False)
if common.PRED_PANOPTIC_KEY in predictions:
# 6. Save panoptic segmentation.
vis_utils.save_parsing_result(
predictions[common.PRED_PANOPTIC_KEY],
label_divisor=label_divisor,
thing_list=thing_list,
save_dir=save_dir,
filename=_PANOPTIC_PREDICTION_FORMAT % image_id,
colormap_name=colormap_name)
vis_utils.save_parsing_result(
parsing_result=inputs[common.GT_PANOPTIC_RAW],
label_divisor=label_divisor,
thing_list=thing_list,
save_dir=save_dir,
filename=_PANOPTIC_LABEL_FORMAT % image_id,
colormap_name=colormap_name)
# 7. Save error of semantic prediction.
label = inputs[common.GT_SEMANTIC_RAW].astype(np.uint8)
error_prediction = (
(predictions[common.PRED_SEMANTIC_KEY] != label) &
(label != dataset_info.ignore_label)).astype(np.uint8) * 255
vis_utils.save_annotation(
error_prediction,
save_dir,
_ANALYSIS_FORMAT % (image_id),
add_colormap=False)
|