Spaces:
Runtime error
Runtime error
File size: 20,044 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains functions to post-process Panoptic-DeepLab results."""
import functools
from typing import Tuple, Dict, Text
import tensorflow as tf
from deeplab2 import common
from deeplab2 import config_pb2
from deeplab2.data import dataset
from deeplab2.model import utils
from deeplab2.tensorflow_ops.python.ops import merge_semantic_and_instance_maps_op as merge_ops
def _get_semantic_predictions(semantic_logits: tf.Tensor) -> tf.Tensor:
"""Computes the semantic classes from the predictions.
Args:
semantic_logits: A tf.tensor of shape [batch, height, width, classes].
Returns:
A tf.Tensor containing the semantic class prediction of shape
[batch, height, width].
"""
return tf.argmax(semantic_logits, axis=-1, output_type=tf.int32)
def _get_instance_centers_from_heatmap(
center_heatmap: tf.Tensor, center_threshold: float, nms_kernel_size: int,
keep_k_centers: int) -> Tuple[tf.Tensor, tf.Tensor]:
"""Computes a list of instance centers.
Args:
center_heatmap: A tf.Tensor of shape [height, width, 1].
center_threshold: A float setting the threshold for the center heatmap.
nms_kernel_size: An integer specifying the nms kernel size.
keep_k_centers: An integer specifying the number of centers to keep (K).
Non-positive values will keep all centers.
Returns:
A tuple of
- tf.Tensor of shape [N, 2] containing N center coordinates (after
non-maximum suppression) in (y, x) order.
- tf.Tensor of shape [height, width] containing the center heatmap after
non-maximum suppression.
"""
# Threshold center map.
center_heatmap = tf.where(
tf.greater(center_heatmap, center_threshold), center_heatmap, 0.0)
# Non-maximum suppression.
padded_map = utils.add_zero_padding(center_heatmap, nms_kernel_size, rank=3)
pooled_center_heatmap = tf.keras.backend.pool2d(
tf.expand_dims(padded_map, 0),
pool_size=(nms_kernel_size, nms_kernel_size),
strides=(1, 1),
padding='valid',
pool_mode='max')
center_heatmap = tf.where(
tf.equal(pooled_center_heatmap, center_heatmap), center_heatmap, 0.0)
center_heatmap = tf.squeeze(center_heatmap, axis=[0, 3])
# `centers` is of shape (N, 2) with (y, x) order of the second dimension.
centers = tf.where(tf.greater(center_heatmap, 0.0))
if keep_k_centers > 0 and tf.shape(centers)[0] > keep_k_centers:
topk_scores, _ = tf.math.top_k(
tf.reshape(center_heatmap, [-1]), keep_k_centers, sorted=False)
centers = tf.where(tf.greater(center_heatmap, topk_scores[-1]))
return centers, center_heatmap
def _find_closest_center_per_pixel(centers: tf.Tensor,
center_offsets: tf.Tensor) -> tf.Tensor:
"""Assigns all pixels to their closest center.
Args:
centers: A tf.Tensor of shape [N, 2] containing N centers with coordinate
order (y, x).
center_offsets: A tf.Tensor of shape [height, width, 2].
Returns:
A tf.Tensor of shape [height, width] containing the index of the closest
center, per pixel.
"""
height = tf.shape(center_offsets)[0]
width = tf.shape(center_offsets)[1]
x_coord, y_coord = tf.meshgrid(tf.range(width), tf.range(height))
coord = tf.stack([y_coord, x_coord], axis=-1)
center_per_pixel = tf.cast(coord, tf.float32) + center_offsets
# centers: [N, 2] -> [N, 1, 2].
# center_per_pixel: [H, W, 2] -> [1, H*W, 2].
centers = tf.cast(tf.expand_dims(centers, 1), tf.float32)
center_per_pixel = tf.reshape(center_per_pixel, [height*width, 2])
center_per_pixel = tf.expand_dims(center_per_pixel, 0)
# distances: [N, H*W].
distances = tf.norm(centers - center_per_pixel, axis=-1)
return tf.reshape(tf.argmin(distances, axis=0), [height, width])
def _get_instances_from_heatmap_and_offset(
semantic_segmentation: tf.Tensor, center_heatmap: tf.Tensor,
center_offsets: tf.Tensor, center_threshold: float,
thing_class_ids: tf.Tensor, nms_kernel_size: int,
keep_k_centers: int) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
"""Computes the instance assignment per pixel.
Args:
semantic_segmentation: A tf.Tensor containing the semantic labels of shape
[height, width].
center_heatmap: A tf.Tensor of shape [height, width, 1].
center_offsets: A tf.Tensor of shape [height, width, 2].
center_threshold: A float setting the threshold for the center heatmap.
thing_class_ids: A tf.Tensor of shape [N] containing N thing indices.
nms_kernel_size: An integer specifying the nms kernel size.
keep_k_centers: An integer specifying the number of centers to keep.
Negative values will keep all centers.
Returns:
A tuple of:
- tf.Tensor containing the instance segmentation (filtered with the `thing`
segmentation from the semantic segmentation output) with shape
[height, width].
- tf.Tensor containing the processed centermap with shape [height, width].
- tf.Tensor containing instance scores (where higher "score" is a reasonable
signal of a higher confidence detection.) Will be of shape [height, width]
with the score for a pixel being the score of the instance it belongs to.
The scores will be zero for pixels in background/"stuff" regions.
"""
thing_segmentation = tf.zeros_like(semantic_segmentation)
for thing_id in thing_class_ids:
thing_segmentation = tf.where(tf.equal(semantic_segmentation, thing_id),
1,
thing_segmentation)
centers, processed_center_heatmap = _get_instance_centers_from_heatmap(
center_heatmap, center_threshold, nms_kernel_size, keep_k_centers)
if tf.shape(centers)[0] == 0:
return (tf.zeros_like(semantic_segmentation), processed_center_heatmap,
tf.zeros_like(processed_center_heatmap))
instance_center_index = _find_closest_center_per_pixel(
centers, center_offsets)
# Instance IDs should start with 1. So we use the index into the centers, but
# shifted by 1.
instance_segmentation = tf.cast(instance_center_index, tf.int32) + 1
# The value of the heatmap at an instance's center is used as the score
# for that instance.
instance_scores = tf.gather_nd(processed_center_heatmap, centers)
tf.debugging.assert_shapes([
(centers, ('N', 2)),
(instance_scores, ('N',)),
])
# This will map the instance scores back to the image space: where each pixel
# has a value equal to the score of its instance.
flat_center_index = tf.reshape(instance_center_index, [-1])
instance_score_map = tf.gather(instance_scores, flat_center_index)
instance_score_map = tf.reshape(instance_score_map,
tf.shape(instance_segmentation))
instance_score_map *= tf.cast(thing_segmentation, tf.float32)
return (thing_segmentation * instance_segmentation, processed_center_heatmap,
instance_score_map)
@tf.function
def _get_panoptic_predictions(
semantic_logits: tf.Tensor, center_heatmap: tf.Tensor,
center_offsets: tf.Tensor, center_threshold: float,
thing_class_ids: tf.Tensor, label_divisor: int, stuff_area_limit: int,
void_label: int, nms_kernel_size: int, keep_k_centers: int,
merge_semantic_and_instance_with_tf_op: bool
) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]:
"""Computes the semantic class and instance ID per pixel.
Args:
semantic_logits: A tf.Tensor of shape [batch, height, width, classes].
center_heatmap: A tf.Tensor of shape [batch, height, width, 1].
center_offsets: A tf.Tensor of shape [batch, height, width, 2].
center_threshold: A float setting the threshold for the center heatmap.
thing_class_ids: A tf.Tensor of shape [N] containing N thing indices.
label_divisor: An integer specifying the label divisor of the dataset.
stuff_area_limit: An integer specifying the number of pixels that stuff
regions need to have at least. The stuff region will be included in the
panoptic prediction, only if its area is larger than the limit; otherwise,
it will be re-assigned as void_label.
void_label: An integer specifying the void label.
nms_kernel_size: An integer specifying the nms kernel size.
keep_k_centers: An integer specifying the number of centers to keep.
Negative values will keep all centers.
merge_semantic_and_instance_with_tf_op: Boolean, specifying the merging
operation uses TensorFlow (CUDA kernel) implementation (True) or
tf.py_function implementation (False). Note the tf.py_function
implementation is simply used as a backup solution when you could not
successfully compile the provided TensorFlow implementation. To reproduce
our results, please use the provided TensorFlow implementation `merge_ops`
(i.e., set to True).
Returns:
A tuple of:
- the panoptic prediction as tf.Tensor with shape [batch, height, width].
- the semantic prediction as tf.Tensor with shape [batch, height, width].
- the instance prediction as tf.Tensor with shape [batch, height, width].
- the centermap prediction as tf.Tensor with shape [batch, height, width].
- the instance score maps as tf.Tensor with shape [batch, height, width].
"""
semantic_prediction = _get_semantic_predictions(semantic_logits)
batch_size = tf.shape(semantic_logits)[0]
instance_map_lists = tf.TensorArray(
tf.int32, size=batch_size, dynamic_size=False)
center_map_lists = tf.TensorArray(
tf.float32, size=batch_size, dynamic_size=False)
instance_score_map_lists = tf.TensorArray(
tf.float32, size=batch_size, dynamic_size=False)
for i in tf.range(batch_size):
(instance_map, center_map,
instance_score_map) = _get_instances_from_heatmap_and_offset(
semantic_prediction[i, ...], center_heatmap[i, ...],
center_offsets[i, ...], center_threshold, thing_class_ids,
nms_kernel_size, keep_k_centers)
instance_map_lists = instance_map_lists.write(i, instance_map)
center_map_lists = center_map_lists.write(i, center_map)
instance_score_map_lists = instance_score_map_lists.write(
i, instance_score_map)
# This does not work with unknown shapes.
instance_maps = instance_map_lists.stack()
center_maps = center_map_lists.stack()
instance_score_maps = instance_score_map_lists.stack()
if merge_semantic_and_instance_with_tf_op:
panoptic_prediction = merge_ops.merge_semantic_and_instance_maps(
semantic_prediction, instance_maps, thing_class_ids, label_divisor,
stuff_area_limit, void_label)
else:
panoptic_prediction = _merge_semantic_and_instance_maps(
semantic_prediction, instance_maps, thing_class_ids, label_divisor,
stuff_area_limit, void_label)
return (panoptic_prediction, semantic_prediction, instance_maps, center_maps,
instance_score_maps)
@tf.function
def _merge_semantic_and_instance_maps(
semantic_prediction: tf.Tensor,
instance_maps: tf.Tensor,
thing_class_ids: tf.Tensor,
label_divisor: int,
stuff_area_limit: int,
void_label: int) -> tf.Tensor:
"""Merges semantic and instance maps to obtain panoptic segmentation.
This function merges the semantic segmentation and class-agnostic
instance segmentation to form the panoptic segmentation. In particular,
the class label of each instance mask is inferred from the majority
votes from the corresponding pixels in the semantic segmentation. This
operation is first poposed in the DeeperLab paper and adopted by the
Panoptic-DeepLab.
- DeeperLab: Single-Shot Image Parser, T-J Yang, et al. arXiv:1902.05093.
- Panoptic-DeepLab, B. Cheng, et al. In CVPR, 2020.
Note that this function only supports batch = 1 for simplicity. Additionally,
this function has a slightly different implementation from the provided
TensorFlow implementation `merge_ops` but with a similar performance. This
function is mainly used as a backup solution when you could not successfully
compile the provided TensorFlow implementation. To reproduce our results,
please use the provided TensorFlow implementation (i.e., not use this
function, but the `merge_ops.merge_semantic_and_instance_maps`).
Args:
semantic_prediction: A tf.Tensor of shape [batch, height, width].
instance_maps: A tf.Tensor of shape [batch, height, width].
thing_class_ids: A tf.Tensor of shape [N] containing N thing indices.
label_divisor: An integer specifying the label divisor of the dataset.
stuff_area_limit: An integer specifying the number of pixels that stuff
regions need to have at least. The stuff region will be included in the
panoptic prediction, only if its area is larger than the limit; otherwise,
it will be re-assigned as void_label.
void_label: An integer specifying the void label.
Returns:
panoptic_prediction: A tf.Tensor with shape [batch, height, width].
"""
prediction_shape = semantic_prediction.get_shape().as_list()
# This implementation only supports batch size of 1. Since model construction
# might lose batch size information (and leave it to None), override it here.
prediction_shape[0] = 1
semantic_prediction = tf.ensure_shape(semantic_prediction, prediction_shape)
instance_maps = tf.ensure_shape(instance_maps, prediction_shape)
# Default panoptic_prediction to have semantic label = void_label.
panoptic_prediction = tf.ones_like(
semantic_prediction) * void_label * label_divisor
# Start to paste predicted `thing` regions to panoptic_prediction.
# Infer `thing` segmentation regions from semantic prediction.
semantic_thing_segmentation = tf.zeros_like(semantic_prediction,
dtype=tf.bool)
for thing_class in thing_class_ids:
semantic_thing_segmentation = tf.math.logical_or(
semantic_thing_segmentation,
semantic_prediction == thing_class)
# Keep track of how many instances for each semantic label.
num_instance_per_semantic_label = tf.TensorArray(
tf.int32, size=0, dynamic_size=True, clear_after_read=False)
instance_ids, _ = tf.unique(tf.reshape(instance_maps, [-1]))
for instance_id in instance_ids:
# Instance ID 0 is reserved for crowd region.
if instance_id == 0:
continue
thing_mask = tf.math.logical_and(instance_maps == instance_id,
semantic_thing_segmentation)
if tf.reduce_sum(tf.cast(thing_mask, tf.int32)) == 0:
continue
semantic_bin_counts = tf.math.bincount(
tf.boolean_mask(semantic_prediction, thing_mask))
semantic_majority = tf.cast(
tf.math.argmax(semantic_bin_counts), tf.int32)
while num_instance_per_semantic_label.size() <= semantic_majority:
num_instance_per_semantic_label = num_instance_per_semantic_label.write(
num_instance_per_semantic_label.size(), 0)
new_instance_id = (
num_instance_per_semantic_label.read(semantic_majority) + 1)
num_instance_per_semantic_label = num_instance_per_semantic_label.write(
semantic_majority, new_instance_id)
panoptic_prediction = tf.where(
thing_mask,
tf.ones_like(panoptic_prediction) * semantic_majority * label_divisor
+ new_instance_id,
panoptic_prediction)
# Done with `num_instance_per_semantic_label` tensor array.
num_instance_per_semantic_label.close()
# Start to paste predicted `stuff` regions to panoptic prediction.
instance_stuff_regions = instance_maps == 0
semantic_ids, _ = tf.unique(tf.reshape(semantic_prediction, [-1]))
for semantic_id in semantic_ids:
if tf.reduce_sum(tf.cast(thing_class_ids == semantic_id, tf.int32)) > 0:
continue
# Check stuff area.
stuff_mask = tf.math.logical_and(semantic_prediction == semantic_id,
instance_stuff_regions)
stuff_area = tf.reduce_sum(tf.cast(stuff_mask, tf.int32))
if stuff_area >= stuff_area_limit:
panoptic_prediction = tf.where(
stuff_mask,
tf.ones_like(panoptic_prediction) * semantic_id * label_divisor,
panoptic_prediction)
return panoptic_prediction
class SemanticOnlyPostProcessor(tf.keras.layers.Layer):
"""This class contains code of a semantic only post-processor."""
def __init__(self):
"""Initializes a semantic only post-processor."""
super(SemanticOnlyPostProcessor, self).__init__(
name='SemanticOnlyPostProcessor')
def call(self, result_dict: Dict[Text, tf.Tensor]) -> Dict[Text, tf.Tensor]:
"""Performs the post-processing given model predicted results.
Args:
result_dict: A dictionary of tf.Tensor containing model results. The dict
has to contain
- common.PRED_SEMANTIC_PROBS_KEY,
Returns:
The post-processed dict of tf.Tensor, containing the following:
- common.PRED_SEMANTIC_KEY,
"""
processed_dict = {}
processed_dict[common.PRED_SEMANTIC_KEY] = _get_semantic_predictions(
result_dict[common.PRED_SEMANTIC_PROBS_KEY])
return processed_dict
class PostProcessor(tf.keras.layers.Layer):
"""This class contains code of a Panoptic-Deeplab post-processor."""
def __init__(
self,
config: config_pb2.ExperimentOptions,
dataset_descriptor: dataset.DatasetDescriptor):
"""Initializes a Panoptic-Deeplab post-processor.
Args:
config: A config_pb2.ExperimentOptions configuration.
dataset_descriptor: A dataset.DatasetDescriptor.
"""
super(PostProcessor, self).__init__(name='PostProcessor')
self._post_processor = functools.partial(
_get_panoptic_predictions,
center_threshold=config.evaluator_options.center_score_threshold,
thing_class_ids=tf.convert_to_tensor(
dataset_descriptor.class_has_instances_list),
label_divisor=dataset_descriptor.panoptic_label_divisor,
stuff_area_limit=config.evaluator_options.stuff_area_limit,
void_label=dataset_descriptor.ignore_label,
nms_kernel_size=config.evaluator_options.nms_kernel,
keep_k_centers=config.evaluator_options.keep_k_centers,
merge_semantic_and_instance_with_tf_op=(
config.evaluator_options.merge_semantic_and_instance_with_tf_op),
)
def call(self, result_dict: Dict[Text, tf.Tensor]) -> Dict[Text, tf.Tensor]:
"""Performs the post-processing given model predicted results.
Args:
result_dict: A dictionary of tf.Tensor containing model results. The dict
has to contain
- common.PRED_SEMANTIC_PROBS_KEY,
- common.PRED_CENTER_HEATMAP_KEY,
- common.PRED_OFFSET_MAP_KEY,
Returns:
The post-processed dict of tf.Tensor, containing the following:
- common.PRED_SEMANTIC_KEY,
- common.PRED_INSTANCE_KEY,
- common.PRED_PANOPTIC_KEY,
- common.PRED_INSTANCE_CENTER_KEY,
- common.PRED_INSTANCE_SCORES_KEY,
"""
processed_dict = {}
(processed_dict[common.PRED_PANOPTIC_KEY],
processed_dict[common.PRED_SEMANTIC_KEY],
processed_dict[common.PRED_INSTANCE_KEY],
processed_dict[common.PRED_INSTANCE_CENTER_KEY],
processed_dict[common.PRED_INSTANCE_SCORES_KEY]
) = self._post_processor(
result_dict[common.PRED_SEMANTIC_PROBS_KEY],
result_dict[common.PRED_CENTER_HEATMAP_KEY],
result_dict[common.PRED_OFFSET_MAP_KEY])
return processed_dict
|