Spaces:
Runtime error
Runtime error
File size: 22,897 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains basic loss classes used in the DeepLab model."""
from typing import Text, Dict, Callable, Optional
import tensorflow as tf
from deeplab2.model import utils
def compute_average_top_k_loss(loss: tf.Tensor,
top_k_percentage: float) -> tf.Tensor:
"""Computes the avaerage top-k loss per sample.
Args:
loss: A tf.Tensor with 2 or more dimensions of shape [batch, ...].
top_k_percentage: A float representing the % of pixel that should be used
for calculating the loss.
Returns:
A tensor of shape [batch] containing the mean top-k loss per sample. Due to
the use of different tf.strategy, we return the loss per sample and require
explicit averaging by the user.
"""
loss = tf.reshape(loss, shape=(tf.shape(loss)[0], -1))
if top_k_percentage != 1.0:
num_elements_per_sample = tf.shape(loss)[1]
top_k_pixels = tf.cast(
tf.math.round(top_k_percentage *
tf.cast(num_elements_per_sample, tf.float32)), tf.int32)
def top_k_1d(inputs):
return tf.math.top_k(inputs, top_k_pixels, sorted=False)[0]
loss = tf.map_fn(fn=top_k_1d, elems=loss)
# Compute mean loss over spatial dimension.
num_non_zero = tf.reduce_sum(tf.cast(tf.not_equal(loss, 0.0), tf.float32), 1)
loss_sum_per_sample = tf.reduce_sum(loss, 1)
return tf.math.divide_no_nan(loss_sum_per_sample, num_non_zero)
def compute_mask_dice_loss(y_true: tf.Tensor,
y_pred: tf.Tensor,
prediction_activation='softmax') -> tf.Tensor:
"""Computes the Mask Dice loss between y_true and y_pred masks.
Reference:
[1] Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In: 3DV (2016)
https://arxiv.org/abs/1606.04797
Args:
y_true: A tf.Tensor of shape [batch, height, width, channels] (or [batch,
length, channels]) containing the ground-truth. The channel dimension
indicates the mask ID in MaX-DeepLab, instead of a "class" dimension in
the V-net paper. In our case, for all batch, height, width, (or batch,
length) the [batch, height, width, :] (or [batch, length, :]) should be
one-hot encodings only, with valid pixels having one and only one 1.0, and
with void pixels being all 0.0. The valid pixels of the masks do not and
should not overlap because of the non-overlapping definition of panoptic
segmentation. The output loss is computed and normalized by valid (not
void) pixels.
y_pred: A tf.Tensor of shape [batch, height, width, channels] (or [batch,
length, channels]) containing the prediction.
prediction_activation: A String indicating activation function of the
prediction. It should be either 'sigmoid' or 'softmax'.
Returns:
A tf.Tensor of shape [batch, channels] with the computed dice loss value.
Raises:
ValueError: An error occurs when prediction_activation is not either
'sigmoid' or 'softmax'.
"""
tf.debugging.assert_rank_in(
y_pred, [3, 4], message='Input tensors y_pred must have rank 3 or 4.')
tf.debugging.assert_rank_in(
y_true, [3, 4], message='Input tensors y_true must have rank 3 or 4.')
shape_list = y_true.shape.as_list()
batch, channels = shape_list[0], shape_list[-1]
if prediction_activation == 'sigmoid':
y_pred = tf.math.sigmoid(y_pred)
elif prediction_activation == 'softmax':
y_pred = tf.nn.softmax(y_pred, axis=-1)
else:
raise ValueError(
"prediction_activation should be either 'sigmoid' or 'softmax'")
y_true_flat = tf.reshape(y_true, [batch, -1, channels])
# valid_flat indicates labeled pixels in the groudtruth. y_true is one-hot
# encodings only, with valid pixels having one and only one 1.0, and with
# invalid pixels having 0.0 values in all the channels. The valid pixels of
# the masks do not overlap because of the non-overlapping definition of
# panoptic segmentation.
valid_flat = tf.reduce_sum(y_true_flat, axis=-1, keepdims=True)
y_pred_flat = tf.reshape(
y_pred, [batch, -1, channels]) * valid_flat
# Use smooth = 1 to avoid division by zero when both y_pred and y_true are
# zeros.
smooth = 1.0
intersection = 2 * tf.reduce_sum(y_pred_flat * y_true_flat, axis=1) + smooth
denominator = (tf.reduce_sum(y_pred_flat, axis=1) +
tf.reduce_sum(y_true_flat, axis=1) + smooth)
loss = 1. - tf.math.divide_no_nan(intersection, denominator)
return loss
def mean_absolute_error(y_true: tf.Tensor,
y_pred: tf.Tensor,
force_keep_dims=False) -> tf.Tensor:
"""Computes the per-pixel mean absolute error for 3D and 4D tensors.
Default reduction behavior: If a 3D tensor is used, no reduction is applied.
In case of a 4D tensor, reduction is applied. This behavior can be overridden
by force_keep_dims.
Note: tf.keras.losses.mean_absolute_error always reduces the output by one
dimension.
Args:
y_true: A tf.Tensor of shape [batch, height, width] or [batch, height,
width, channels] containing the ground-truth.
y_pred: A tf.Tensor of shape [batch, height, width] or [batch, height,
width, channels] containing the prediction.
force_keep_dims: A boolean flag specifying whether no reduction should be
applied.
Returns:
A tf.Tensor with the mean absolute error.
"""
tf.debugging.assert_rank_in(
y_pred, [3, 4], message='Input tensors must have rank 3 or 4.')
if len(y_pred.shape.as_list()) == 3 or force_keep_dims:
return tf.abs(y_true - y_pred)
else:
return tf.reduce_mean(tf.abs(y_true - y_pred), axis=[3])
def mean_squared_error(y_true: tf.Tensor,
y_pred: tf.Tensor,
force_keep_dims=False) -> tf.Tensor:
"""Computes the per-pixel mean squared error for 3D and 4D tensors.
Default reduction behavior: If a 3D tensor is used, no reduction is applied.
In case of a 4D tensor, reduction is applied. This behavior can be overridden
by force_keep_dims.
Note: tf.keras.losses.mean_squared_error always reduces the output by one
dimension.
Args:
y_true: A tf.Tensor of shape [batch, height, width] or [batch, height,
width, channels] containing the ground-truth.
y_pred: A tf.Tensor of shape [batch, height, width] or [batch, height,
width, channels] containing the prediction.
force_keep_dims: A boolean flag specifying whether no reduction should be
applied.
Returns:
A tf.Tensor with the mean squared error.
"""
tf.debugging.assert_rank_in(
y_pred, [3, 4], message='Input tensors must have rank 3 or 4.')
if len(y_pred.shape.as_list()) == 3 or force_keep_dims:
return tf.square(y_true - y_pred)
else:
return tf.reduce_mean(tf.square(y_true - y_pred), axis=[3])
def encode_one_hot(gt: tf.Tensor,
num_classes: int,
weights: tf.Tensor,
ignore_label: Optional[int]):
"""Helper function for one-hot encoding of integer labels.
Args:
gt: A tf.Tensor providing ground-truth information. Integer type label.
num_classes: An integer indicating the number of classes considered in the
ground-truth. It is used as 'depth' in tf.one_hot().
weights: A tf.Tensor containing weights information.
ignore_label: An integer specifying the ignore label or None.
Returns:
gt: A tf.Tensor of one-hot encoded gt labels.
weights: A tf.Tensor with ignore_label considered.
"""
if ignore_label is not None:
keep_mask = tf.cast(tf.not_equal(gt, ignore_label), dtype=tf.float32)
else:
keep_mask = tf.ones_like(gt, dtype=tf.float32)
gt = tf.stop_gradient(tf.one_hot(gt, num_classes))
weights = tf.multiply(weights, keep_mask)
return gt, weights
def is_one_hot(gt: tf.Tensor, pred: tf.Tensor):
"""Helper function for checking if gt tensor is one-hot encoded or not.
Args:
gt: A tf.Tensor providing ground-truth information.
pred: A tf.Tensor providing prediction information.
Returns:
A boolean indicating whether the gt is one-hot encoded (True) or
in integer type (False).
"""
gt_shape = gt.get_shape().as_list()
pred_shape = pred.get_shape().as_list()
# If the ground truth is one-hot encoded, the rank of the ground truth should
# match that of the prediction. In addition, we check that the first
# dimension, batch_size, and the last dimension, channels, should also match
# the prediction. However, we still allow spatial dimensions, e.g., height and
# width, to be different since we will downsample the ground truth if needed.
return (len(gt_shape) == len(pred_shape) and
gt_shape[0] == pred_shape[0] and gt_shape[-1] == pred_shape[-1])
def _ensure_topk_value_is_percentage(top_k_percentage: float):
"""Checks if top_k_percentage is between 0.0 and 1.0.
Args:
top_k_percentage: The floating point value to check.
"""
if top_k_percentage < 0.0 or top_k_percentage > 1.0:
raise ValueError('The top-k percentage parameter must lie within 0.0 and '
'1.0, but %f was given' % top_k_percentage)
class TopKGeneralLoss(tf.keras.losses.Loss):
"""This class contains code to compute the top-k loss."""
def __init__(self,
loss_function: Callable[[tf.Tensor, tf.Tensor], tf.Tensor],
gt_key: Text,
pred_key: Text,
weight_key: Text,
top_k_percent_pixels: float = 1.0):
"""Initializes a top-k L1 loss.
Args:
loss_function: A callable loss function.
gt_key: A key to extract the ground-truth tensor.
pred_key: A key to extract the prediction tensor.
weight_key: A key to extract the weight tensor.
top_k_percent_pixels: An optional float specifying the percentage of
pixels used to compute the loss. The value must lie within [0.0, 1.0].
"""
# Implicit reduction might mess with tf.distribute.Strategy, hence we
# explicitly reduce the loss.
super(TopKGeneralLoss,
self).__init__(reduction=tf.keras.losses.Reduction.NONE)
_ensure_topk_value_is_percentage(top_k_percent_pixels)
self._loss_function = loss_function
self._top_k_percent_pixels = top_k_percent_pixels
self._gt_key = gt_key
self._pred_key = pred_key
self._weight_key = weight_key
def call(self, y_true: Dict[Text, tf.Tensor],
y_pred: Dict[Text, tf.Tensor]) -> tf.Tensor:
"""Computes the top-k loss.
Args:
y_true: A dict of tensors providing ground-truth information.
y_pred: A dict of tensors providing predictions.
Returns:
A tensor of shape [batch] containing the loss per sample.
"""
gt = y_true[self._gt_key]
pred = y_pred[self._pred_key]
weights = y_true[self._weight_key]
per_pixel_loss = self._loss_function(gt, pred)
per_pixel_loss = tf.multiply(per_pixel_loss, weights)
return compute_average_top_k_loss(per_pixel_loss,
self._top_k_percent_pixels)
class TopKCrossEntropyLoss(tf.keras.losses.Loss):
"""This class contains code for top-k cross-entropy."""
def __init__(self,
gt_key: Text,
pred_key: Text,
weight_key: Text,
num_classes: Optional[int],
ignore_label: Optional[int],
top_k_percent_pixels: float = 1.0,
dynamic_weight: bool = False):
"""Initializes a top-k cross entropy loss.
Args:
gt_key: A key to extract the ground-truth tensor.
pred_key: A key to extract the prediction tensor.
weight_key: A key to extract the weight tensor.
num_classes: An integer specifying the number of classes in the dataset.
ignore_label: An optional integer specifying the ignore label or None.
top_k_percent_pixels: An optional float specifying the percentage of
pixels used to compute the loss. The value must lie within [0.0, 1.0].
dynamic_weight: A boolean indicating whether the weights are determined
dynamically w.r.t. the class confidence of each predicted mask.
Raises:
ValueError: An error occurs when top_k_percent_pixels is not between 0.0
and 1.0.
"""
# Implicit reduction might mess with tf.distribute.Strategy, hence we
# explicitly reduce the loss.
super(TopKCrossEntropyLoss,
self).__init__(reduction=tf.keras.losses.Reduction.NONE)
_ensure_topk_value_is_percentage(top_k_percent_pixels)
self._num_classes = num_classes
self._ignore_label = ignore_label
self._top_k_percent_pixels = top_k_percent_pixels
self._gt_key = gt_key
self._pred_key = pred_key
self._weight_key = weight_key
self._dynamic_weight = dynamic_weight
def call(self, y_true: Dict[Text, tf.Tensor],
y_pred: Dict[Text, tf.Tensor]) -> tf.Tensor:
"""Computes the top-k cross-entropy loss.
Args:
y_true: A dict of tensors providing ground-truth information. The tensors
can be either integer type or one-hot encoded. When is integer type, the
shape can be either [batch, num_elements] or [batch, height, width].
When one-hot encoded, the shape can be [batch, num_elements, channels]
or [batch, height, width, channels].
y_pred: A dict of tensors providing predictions. The tensors are of shape
[batch, num_elements, channels] or [batch, height, width, channels]. If
the prediction is 2D (with height and width), we allow the spatial
dimension to be strided_height and strided_width. In this case, we
downsample the ground truth accordingly.
Returns:
A tensor of shape [batch] containing the loss per image.
Raises:
ValueError: If the prediction is 1D (with the length dimension) but its
length does not match that of the ground truth.
"""
gt = y_true[self._gt_key]
pred = y_pred[self._pred_key]
gt_shape = gt.get_shape().as_list()
pred_shape = pred.get_shape().as_list()
if self._dynamic_weight:
weights = y_pred[self._weight_key]
else:
weights = y_true[self._weight_key]
# Downsample the ground truth for 2D prediction cases.
if len(pred_shape) == 4 and gt_shape[1:3] != pred_shape[1:3]:
gt = utils.strided_downsample(gt, pred_shape[1:3])
weights = utils.strided_downsample(weights, pred_shape[1:3])
elif len(pred_shape) == 3 and gt_shape[1] != pred_shape[1]:
# We don't support downsampling for 1D predictions.
raise ValueError('The shape of gt does not match the shape of pred.')
if is_one_hot(gt, pred):
gt = tf.cast(gt, tf.float32)
else:
gt = tf.cast(gt, tf.int32)
gt, weights = encode_one_hot(gt, self._num_classes, weights,
self._ignore_label)
pixel_losses = tf.keras.backend.categorical_crossentropy(
gt, pred, from_logits=True)
weighted_pixel_losses = tf.multiply(pixel_losses, weights)
return compute_average_top_k_loss(weighted_pixel_losses,
self._top_k_percent_pixels)
class FocalCrossEntropyLoss(tf.keras.losses.Loss):
"""This class contains code for focal cross-entropy."""
def __init__(self,
gt_key: Text,
pred_key: Text,
weight_key: Text,
num_classes: Optional[int],
ignore_label: Optional[int],
focal_loss_alpha: float = 0.75,
focal_loss_gamma: float = 0.0,
background_channel_index: int = -1,
dynamic_weight: bool = True):
"""Initializes a focal cross entropy loss.
FocalCrossEntropyLoss supports focal-loss mode with integer
or one-hot ground-truth labels.
Reference:
[1] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. Focal loss for
dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV). (2017)
https://arxiv.org/abs/1708.02002
Args:
gt_key: A key to extract the ground-truth tensor.
pred_key: A key to extract the prediction tensor.
weight_key: A key to extract the weight tensor.
num_classes: An integer specifying the number of classes in the dataset.
ignore_label: An optional integer specifying the ignore label or None.
Only effective when ground truth labels are in integer mode.
focal_loss_alpha: An optional float specifying the coefficient that
weights between positive (matched) and negative (unmatched) masks in
focal loss. The positives are weighted by alpha, while the negatives
are weighted by (1. - alpha). Default to 0.75.
focal_loss_gamma: An optional float specifying the coefficient that
weights probability (pt) term in focal loss. Focal loss = - ((1 - pt) ^
gamma) * log(pt). Default to 0.0.
background_channel_index: The index for background channel. When alpha
is used, we assume the last channel is background and others are
foreground. Default to -1.
dynamic_weight: A boolean indicating whether the weights are determined
dynamically w.r.t. the class confidence of each predicted mask.
"""
# Implicit reduction might mess with tf.distribute.Strategy, hence we
# explicitly reduce the loss.
super(FocalCrossEntropyLoss,
self).__init__(reduction=tf.keras.losses.Reduction.NONE)
self._num_classes = num_classes
self._ignore_label = ignore_label
self._focal_loss_alpha = focal_loss_alpha
self._focal_loss_gamma = focal_loss_gamma
self._background_channel_index = background_channel_index
self._gt_key = gt_key
self._pred_key = pred_key
self._weight_key = weight_key
self._dynamic_weight = dynamic_weight
def call(self, y_true: Dict[Text, tf.Tensor],
y_pred: Dict[Text, tf.Tensor]) -> tf.Tensor:
"""Computes the focal cross-entropy loss.
Args:
y_true: A dict of tensors providing ground-truth information. The tensors
can be either integer type or one-hot encoded. When is integer type, the
shape can be either [batch, num_elements] or [batch, height, width].
When one-hot encoded, the shape can be [batch, num_elements, channels]
or [batch, height, width, channels].
y_pred: A dict of tensors providing predictions. The tensors are of shape
[batch, num_elements, channels] or [batch, height, width, channels].
Returns:
A tensor of shape [batch] containing the loss per image.
"""
gt = y_true[self._gt_key]
pred = y_pred[self._pred_key]
if self._dynamic_weight:
# Dynamic weights w.r.t. the class confidence of each predicted mask.
weights = y_pred[self._weight_key]
else:
weights = y_true[self._weight_key]
if is_one_hot(gt, pred):
gt = tf.cast(gt, tf.float32)
else:
gt = tf.cast(gt, tf.int32)
gt, weights = encode_one_hot(gt, self._num_classes, weights,
self._ignore_label)
pixel_losses = tf.nn.softmax_cross_entropy_with_logits(gt, pred)
# Focal loss
if self._focal_loss_gamma == 0.0:
pixel_focal_losses = pixel_losses
else:
predictions = tf.nn.softmax(pred, axis=-1)
pt = tf.reduce_sum(predictions * gt, axis=-1)
pixel_focal_losses = tf.multiply(
tf.pow(1.0 - pt, self._focal_loss_gamma), pixel_losses)
if self._focal_loss_alpha >= 0:
# alpha_weights = alpha * positive masks + (1 - alpha) * negative masks.
alpha = self._focal_loss_alpha
alpha_weights = (
alpha * (1.0 - gt[..., self._background_channel_index])
+ (1 - alpha) * gt[..., self._background_channel_index])
pixel_focal_losses = alpha_weights * pixel_focal_losses
weighted_pixel_losses = tf.multiply(pixel_focal_losses, weights)
weighted_pixel_losses = tf.reshape(
weighted_pixel_losses, shape=(tf.shape(weighted_pixel_losses)[0], -1))
# Compute mean loss over spatial dimension.
num_non_zero = tf.reduce_sum(
tf.cast(tf.not_equal(weighted_pixel_losses, 0.0), tf.float32), 1)
loss_sum_per_sample = tf.reduce_sum(weighted_pixel_losses, 1)
return tf.math.divide_no_nan(loss_sum_per_sample, num_non_zero)
class MaskDiceLoss(tf.keras.losses.Loss):
"""This class contains code to compute Mask Dice loss.
The channel dimension in Mask Dice loss indicates the mask ID in MaX-DeepLab,
instead of a "class" dimension in the original Dice loss.
"""
def __init__(self,
gt_key: Text,
pred_key: Text,
weight_key: Text,
prediction_activation='softmax'):
"""Initializes a Mask Dice loss.
Args:
gt_key: A key to extract the ground-truth tensor.
pred_key: A key to extract the pred tensor.
weight_key: A key to extract the weight tensor.
prediction_activation: A String indicating activation function of the
prediction. It should be either 'sigmoid' or 'softmax'.
"""
# Implicit reduction might mess with tf.distribute.Strategy, hence we
# explicitly reduce the loss.
super(MaskDiceLoss, self).__init__(reduction=tf.keras.losses.Reduction.NONE)
self._gt_key = gt_key
self._pred_key = pred_key
self._weight_key = weight_key
self._prediction_activation = prediction_activation
def call(self, y_true: Dict[Text, tf.Tensor],
y_pred: Dict[Text, tf.Tensor]) -> tf.Tensor:
"""Computes the Mask Dice loss.
Args:
y_true: A dict of tensors providing ground-truth information.
y_pred: A dict of tensors providing predictions.
Returns:
A tensor of shape [batch] containing the loss per sample.
"""
gt = y_true[self._gt_key]
pred = y_pred[self._pred_key]
# Dynamic weights w.r.t. the class confidence of each predicted mask.
weights = y_pred[self._weight_key]
weighted_dice_losses = tf.multiply(
compute_mask_dice_loss(gt, pred, self._prediction_activation),
weights)
# Reduce_sum over the channels (i.e., number of masks).
return tf.reduce_sum(weighted_dice_losses, axis=-1)
|