Spaces:
Runtime error
Runtime error
File size: 13,543 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implements Axial-Blocks proposed in Axial-DeepLab [1].
Axial-Blocks are based on residual bottleneck blocks, but with the 3x3
convolution replaced with two axial-attention layers, one on the height-axis,
followed by the other on the width-axis.
[1] Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight.
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
"""
import tensorflow as tf
from deeplab2.model import utils
from deeplab2.model.layers import activations
from deeplab2.model.layers import axial_layers
from deeplab2.model.layers import convolutions
from deeplab2.model.layers import squeeze_and_excite
class AxialBlock(tf.keras.layers.Layer):
"""An AxialBlock as a building block for an Axial-ResNet model.
We implement the Axial-Block proposed in [1] in a general way that also
includes convolutional residual blocks, such as the basic block and the
bottleneck block (w/ and w/o Switchable Atrous Convolution).
A basic block consists of two 3x3 convolutions and a residual connection. It
is the main building block for wide-resnet variants.
A bottleneck block consists of consecutive 1x1, 3x3, 1x1 convolutions and a
residual connection. It is the main building block for standard resnet
variants.
An axial block consists of a 1x1 input convolution, a self-attention layer
(either axial-attention or global attention), a 1x1 output convolution, and a
residual connection. It is the main building block for axial-resnet variants.
Note: We apply the striding in the first spatial operation (i.e. 3x3
convolution or self-attention layer).
"""
def __init__(self,
filters_list,
kernel_size=3,
strides=1,
atrous_rate=1,
use_squeeze_and_excite=False,
use_sac=False,
bn_layer=tf.keras.layers.BatchNormalization,
activation='relu',
name=None,
conv_kernel_weight_decay=0.0,
basic_block_second_conv_atrous_rate=None,
attention_type=None,
axial_layer_config=None):
"""Initializes an AxialBlock.
Args:
filters_list: A list of filter numbers in the residual block. We currently
support filters_list with two or three elements. Two elements specify
the filters for two consecutive 3x3 convolutions, while three elements
specify the filters for three convolutions (1x1, 3x3, and 1x1).
kernel_size: The size of the convolution kernels (default: 3).
strides: The strides of the block (default: 1).
atrous_rate: The atrous rate of the 3x3 convolutions (default: 1). If this
residual block is a basic block, it is recommendeded to specify correct
basic_block_second_conv_atrous_rate for the second 3x3 convolution.
Otherwise, the second conv will also use atrous rate, which might cause
atrous inconsistency with different output strides, as tested in
axial_block_groups_test.test_atrous_consistency_basic_block.
use_squeeze_and_excite: A boolean flag indicating whether
squeeze-and-excite (SE) is used.
use_sac: A boolean, using the Switchable Atrous Convolution (SAC) or not.
bn_layer: A tf.keras.layers.Layer that computes the normalization
(default: tf.keras.layers.BatchNormalization).
activation: A string specifying the activation function to apply.
name: An string specifying the name of the layer (default: None).
conv_kernel_weight_decay: A float, the weight decay for convolution
kernels.
basic_block_second_conv_atrous_rate: An integer, the atrous rate for the
second convolution of basic block. This is necessary to ensure atrous
consistency with different output_strides. Defaults to atrous_rate.
attention_type: A string, type of attention to apply. Support 'axial' and
'global'.
axial_layer_config: A dict, an argument dictionary for the axial layer.
Raises:
ValueError: If filters_list does not have two or three elements.
ValueError: If attention_type is not supported.
ValueError: If double_global_attention is True in axial_layer_config.
"""
super(AxialBlock, self).__init__(name=name)
self._filters_list = filters_list
self._strides = strides
self._use_squeeze_and_excite = use_squeeze_and_excite
self._bn_layer = bn_layer
self._activate_fn = activations.get_activation(activation)
self._attention_type = attention_type
if axial_layer_config is None:
axial_layer_config = {}
if basic_block_second_conv_atrous_rate is None:
basic_block_second_conv_atrous_rate = atrous_rate
if len(filters_list) == 3:
# Three consecutive convolutions: 1x1, 3x3, and 1x1.
self._conv1_bn_act = convolutions.Conv2DSame(
filters_list[0], 1, 'conv1_bn_act',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation=activation,
conv_kernel_weight_decay=conv_kernel_weight_decay)
if attention_type is None or attention_type.lower() == 'none':
self._conv2_bn_act = convolutions.Conv2DSame(
filters_list[1], kernel_size, 'conv2_bn_act',
strides=strides,
atrous_rate=atrous_rate,
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation=activation,
use_switchable_atrous_conv=use_sac,
# We default to use global context in SAC if use_sac is True. This
# setting is experimentally found effective.
use_global_context_in_sac=use_sac,
conv_kernel_weight_decay=conv_kernel_weight_decay)
elif attention_type == 'axial':
if 'double_global_attention' in axial_layer_config:
if axial_layer_config['double_global_attention']:
raise ValueError('Double_global_attention takes no effect in '
'AxialAttention2D.')
del axial_layer_config['double_global_attention']
self._attention = axial_layers.AxialAttention2D(
strides=strides,
filters=filters_list[1],
name='attention',
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay,
**axial_layer_config)
elif attention_type == 'global':
self._attention = axial_layers.GlobalAttention2D(
strides=strides,
filters=filters_list[1],
name='attention',
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay,
**axial_layer_config)
else:
raise ValueError(attention_type + ' is not supported.')
# Here we apply a batch norm with gamma initialized at zero. This ensures
# that at random initialization of the model, the skip connections
# dominate all residual blocks. In this way, all the skip connections
# construct an identity mapping that passes the gradients (without any
# distortion from the randomly initialized blocks) to all residual blocks.
# This trick helps training at early epochs.
# Reference: "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour".
# https://arxiv.org/abs/1706.02677
self._conv3_bn = convolutions.Conv2DSame(
filters_list[2], 1, 'conv3_bn',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
bn_gamma_initializer='zeros',
activation='none',
conv_kernel_weight_decay=conv_kernel_weight_decay)
elif len(filters_list) == 2:
# Two consecutive convolutions: 3x3 and 3x3.
self._conv1_bn_act = convolutions.Conv2DSame(
filters_list[0], kernel_size, 'conv1_bn_act',
strides=strides,
atrous_rate=atrous_rate,
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation=activation,
use_switchable_atrous_conv=use_sac,
use_global_context_in_sac=use_sac,
conv_kernel_weight_decay=conv_kernel_weight_decay)
# Here we apply a batch norm with gamma initialized at zero. This ensures
# that at random initialization of the model, the skip connections
# dominate all residual blocks. In this way, all the skip connections
# construct an identity mapping that passes the gradients (without any
# distortion from the randomly initialized blocks) to all residual blocks.
# This trick helps training at early epochs.
# Reference: "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour".
# https://arxiv.org/abs/1706.02677
self._conv2_bn = convolutions.Conv2DSame(
filters_list[1], kernel_size, 'conv2_bn',
strides=1,
atrous_rate=basic_block_second_conv_atrous_rate,
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
bn_gamma_initializer='zeros',
activation='none',
use_switchable_atrous_conv=use_sac,
use_global_context_in_sac=use_sac,
conv_kernel_weight_decay=conv_kernel_weight_decay)
else:
raise ValueError('Expect filters_list to have length 2 or 3; got %d' %
len(filters_list))
if self._use_squeeze_and_excite:
self._squeeze_and_excite = squeeze_and_excite.SimplifiedSqueezeAndExcite(
filters_list[-1])
self._conv_kernel_weight_decay = conv_kernel_weight_decay
def build(self, input_shape_list):
input_tensor_shape = input_shape_list[0]
self._shortcut = None
if input_tensor_shape[3] != self._filters_list[-1]:
self._shortcut = convolutions.Conv2DSame(
self._filters_list[-1], 1, 'shortcut',
strides=self._strides,
use_bias=False,
use_bn=True,
bn_layer=self._bn_layer,
activation='none',
conv_kernel_weight_decay=self._conv_kernel_weight_decay)
def call(self, inputs):
"""Performs a forward pass.
We have to define drop_path_random_mask outside the layer call and pass it
into the layer, because recompute_grad (gradient checkpointing) does not
allow any randomness within the function call. In addition, recompute_grad
only supports float tensors as inputs. For this reason, the training flag
should be also passed as a float tensor. For the same reason, we cannot
support passing drop_path_random_mask as None. Instead, we ask the users to
pass only the first two tensors when drop path is not used.
Args:
inputs: A tuple of 2 or 3 tensors, containing
input_tensor should be an input tensor of type tf.Tensor with shape
[batch, height, width, channels].
float_tensor_training should be a float tensor of 0.0 or 1.0, whether
the model is in training mode.
(optional) drop_path_random_mask is a drop path random mask of type
tf.Tensor with shape [batch, 1, 1, 1].
Returns:
outputs: two tensors. The first tensor does not use the last activation
function. The second tensor uses the activation. We return non-activated
output to support MaX-DeepLab which uses non-activated feature for the
stacked decoders.
Raises:
ValueError: If the length of inputs is not 2 or 3.
"""
if len(inputs) not in (2, 3):
raise ValueError('The length of inputs should be either 2 or 3.')
# Unpack the inputs.
input_tensor, float_tensor_training, drop_path_random_mask = (
utils.pad_sequence_with_none(inputs, target_length=3))
# Recompute_grad takes only float tensors as inputs. It does not allow
# bools or boolean tensors. For this reason, we cast training to a float
# tensor outside this call, and now we cast it back to a boolean tensor.
training = tf.cast(float_tensor_training, tf.bool)
shortcut = input_tensor
if self._shortcut is not None:
shortcut = self._shortcut(shortcut, training=training)
elif self._strides != 1:
shortcut = shortcut[:, ::self._strides, ::self._strides, :]
if len(self._filters_list) == 3:
x = self._conv1_bn_act(input_tensor, training=training)
if (self._attention_type is None or
self._attention_type.lower() == 'none'):
x = self._conv2_bn_act(x, training=training)
else:
x = self._attention(x, training=training)
x = self._activate_fn(x)
x = self._conv3_bn(x, training=training)
if len(self._filters_list) == 2:
x = self._conv1_bn_act(input_tensor, training=training)
x = self._conv2_bn(x, training=training)
if self._use_squeeze_and_excite:
x = self._squeeze_and_excite(x)
if drop_path_random_mask is not None:
x = x * drop_path_random_mask
x = x + shortcut
return x, self._activate_fn(x)
|