Spaces:
Runtime error
Runtime error
File size: 17,814 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains Axial-ResNet model instances for Axial-DeepLab and MaX-DeepLab.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
MaX-DeepLab: "End-to-End Panoptic Segmentation with Mask Transformers",
CVPR 2021. https://arxiv.org/abs/2012.00759
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
"""
import abc
import collections.abc
import copy
from absl import logging
import tensorflow as tf
from deeplab2.model.encoder import axial_resnet
def _get_default_config():
"""Gets the default config for Axial-ResNets."""
# The default config dictionary for an Axial-ResNet is the MaX-DeepLab-S
# architecture for panoptic segmentation. This default config dictionary also
# exactly matches the default arguments of the functions.
default_config = {
'num_blocks': [3, 4, 6, 3],
'backbone_layer_multiplier': 1.0,
'width_multiplier': 1.0,
'stem_width_multiplier': 1.0,
'output_stride': 16,
'classification_mode': False,
'backbone_type': 'resnet_beta',
'use_axial_beyond_stride': 16,
'backbone_use_transformer_beyond_stride': 32,
'extra_decoder_use_transformer_beyond_stride': 32,
'backbone_decoder_num_stacks': 0,
'backbone_decoder_blocks_per_stage': 1,
'extra_decoder_num_stacks': 0,
'extra_decoder_blocks_per_stage': 1,
'max_num_mask_slots': 128,
'num_mask_slots': 128,
'memory_channels': 256,
'base_transformer_expansion': 1.0,
'global_feed_forward_network_channels': 256,
'high_resolution_output_stride': 4,
'activation': 'relu',
'block_group_config': {
'attention_bottleneck_expansion': 2,
'drop_path_keep_prob': 0.8,
'drop_path_beyond_stride': 16,
'drop_path_schedule': 'constant',
'positional_encoding_type': None,
'use_global_beyond_stride': 0,
'use_sac_beyond_stride': 0,
'use_squeeze_and_excite': False,
'conv_use_recompute_grad': False,
'axial_use_recompute_grad': True,
'recompute_within_stride': 0,
'transformer_use_recompute_grad': False,
'axial_layer_config': {
'query_shape': (129, 129),
'key_expansion': 1,
'value_expansion': 2,
'memory_flange': (32, 32),
'double_global_attention': False,
'num_heads': 8,
'use_query_rpe_similarity': True,
'use_key_rpe_similarity': True,
'use_content_similarity': True,
'retrieve_value_rpe': True,
'retrieve_value_content': True,
'initialization_std_for_query_key_rpe': 1.0,
'initialization_std_for_value_rpe': 1.0,
'self_attention_activation': 'softmax',
},
'dual_path_transformer_layer_config': {
'num_heads': 8,
'bottleneck_expansion': 2,
'key_expansion': 1,
'value_expansion': 2,
'feed_forward_network_channels': 2048,
'use_memory_self_attention': True,
'use_pixel2memory_feedback_attention': True,
'transformer_activation': 'softmax',
},
},
'bn_layer': tf.keras.layers.BatchNormalization,
'conv_kernel_weight_decay': 0.0,
}
return default_config
def override(config_dict, override_dict):
"""Recursively overrides a config dict with another."""
output_dict = copy.deepcopy(config_dict)
for key, value in override_dict.items():
if isinstance(value, collections.abc.Mapping):
output_dict[key] = override(config_dict.get(key, {}), value)
else:
output_dict[key] = value
return output_dict
class AxialResNetInstance(axial_resnet.AxialResNet):
"""A base Axial-ResNet model."""
@classmethod
@abc.abstractmethod
def _get_config(cls):
pass
def __init__(self, name, **kwargs):
"""Builds an Axial-ResNet model."""
# Get the config of the current model.
current_config = self._get_config()
# Override the default config with the current config. This line can be
# omitted because the default config equals the default arguments of the
# functions that build the model. But we make all the configs explicit here.
current_config = override(_get_default_config(), current_config)
# Finally, override the current model config with keyword arguments. In this
# way, we still respect arguments passed as keyword arguments, such as
# classification_mode, output_stride, etc.
current_config = override(current_config, kwargs)
logging.info('Axial-ResNet final config: %s', current_config)
super(AxialResNetInstance, self).__init__(name, **current_config)
class MaXDeepLabS(AxialResNetInstance):
"""MaX-DeepLab-S for panoptic segmentation.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
MaX-DeepLab: "End-to-End Panoptic Segmentation with Mask Transformers",
CVPR 2021. https://arxiv.org/abs/2012.00759
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
# Return an empty dictionary as the default values are all set for
# MaX-DeepLab-S.
return {}
class MaXDeepLabL(AxialResNetInstance):
"""MaX-DeepLab-L for panoptic segmentation.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
MaX-DeepLab: "End-to-End Panoptic Segmentation with Mask Transformers",
CVPR 2021. https://arxiv.org/abs/2012.00759
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
return {
'num_blocks': [3, 6, 3, 3],
'backbone_type': 'wider_resnet',
'backbone_use_transformer_beyond_stride': 16,
'extra_decoder_use_transformer_beyond_stride': 16,
'backbone_decoder_num_stacks': 1,
'extra_decoder_num_stacks': 1,
'extra_decoder_blocks_per_stage': 3,
'memory_channels': 512,
'base_transformer_expansion': 2.0,
'global_feed_forward_network_channels': 512,
'block_group_config': {
'attention_bottleneck_expansion': 4,
'drop_path_beyond_stride': 4,
'axial_layer_config': {
'key_expansion': 2,
'value_expansion': 4,
},
},
}
class MaXDeepLabSBackbone(MaXDeepLabS):
"""MaX-DeepLab-S backbone for image classification pretraining.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
MaX-DeepLab: "End-to-End Panoptic Segmentation with Mask Transformers",
CVPR 2021. https://arxiv.org/abs/2012.00759
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
base_config = super(MaXDeepLabSBackbone, cls)._get_config()
# Override the config of MaXDeepLabS.
override_config = {
'classification_mode': True,
# The transformer blocks are not ImageNet pretrained. They are randomly
# initialized and trained from scratch for panoptic segmentation.
'backbone_use_transformer_beyond_stride': 0,
}
return override(base_config, override_config)
class MaXDeepLabLBackbone(MaXDeepLabL):
"""MaX-DeepLab-L backbone for image classification pretraining.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
MaX-DeepLab: "End-to-End Panoptic Segmentation with Mask Transformers",
CVPR 2021. https://arxiv.org/abs/2012.00759
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
base_config = super(MaXDeepLabLBackbone, cls)._get_config()
# Override the config of MaXDeepLabL.
override_config = {
'classification_mode': True,
# The transformer blocks are not ImageNet pretrained. They are randomly
# initialized and trained from scratch for panoptic segmentation.
'backbone_use_transformer_beyond_stride': 0,
}
return override(base_config, override_config)
class ResNet50(AxialResNetInstance):
"""A ResNet-50 instance.
Note that the implementation is different from the original ResNet-50 in:
(1) We apply strided convolutions in the first 3x3 convolution of the first
residual block of a stage.
(2) We replace the strided max pooling layer in the stem by applying strided
convolution in the immediate next residual block.
"""
@classmethod
def _get_config(cls):
return {
'classification_mode': True,
'backbone_type': 'resnet',
'use_axial_beyond_stride': 0,
'backbone_use_transformer_beyond_stride': 0,
'block_group_config': {
'drop_path_keep_prob': 1.0,
},
}
class ResNet50Beta(ResNet50):
"""A ResNet-50 but with inception stem.
Note that the implementation is different from the original ResNet-50 in:
(1) We apply strided convolutions in the first 3x3 convolution of the first
residual block of a stage.
(2) We replace the strided max pooling layer in the stem by applying strided
convolution in the immediate next residual block.
"""
@classmethod
def _get_config(cls):
base_config = super(ResNet50Beta, cls)._get_config()
# Override the config of ResNet50.
override_config = {
'backbone_type': 'resnet_beta',
}
return override(base_config, override_config)
class AxialResNetL(ResNet50):
"""Axial-ResNet-L for image classification only.
Axial-ResNet-L is a ResNet50 with use_axial_beyond_stride = 2.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
base_config = super(AxialResNetL, cls)._get_config()
# Override the config of ResNet50.
override_config = {
'use_axial_beyond_stride': 2,
}
return override(base_config, override_config)
class AxialResNetS(ResNet50):
"""Axial-ResNet-S for image classification only.
Axial-ResNet-S is a ResNet50 with use_axial_beyond_stride = 2 and
width_multiplier = 0.5.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
base_config = super(AxialResNetS, cls)._get_config()
# Override the config of ResNet50.
override_config = {
'width_multiplier': 0.5,
'use_axial_beyond_stride': 2,
}
return override(base_config, override_config)
class AxialDeepLabL(ResNet50Beta):
"""Axial-DeepLab-L for panoptic segmentation.
Axial-DeepLab-L is a ResNet50Beta with use_axial_beyond_stride = 2.
Axial-DeepLab-L is also equivalent to Axial-ResNet-L with an inception stem.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
base_config = super(AxialDeepLabL, cls)._get_config()
override_config = {
'use_axial_beyond_stride': 2,
}
return override(base_config, override_config)
class AxialDeepLabS(ResNet50Beta):
"""Axial-DeepLab-S for panoptic segmentation.
Axial-DeepLab-S is a ResNet50Beta with use_axial_beyond_stride = 2 and
width_multiplier = 0.5.
Axial-DeepLab-S is also equivalent to Axial-ResNet-S with an inception stem.
Reference:
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
base_config = super(AxialDeepLabS, cls)._get_config()
override_config = {
'width_multiplier': 0.5,
'use_axial_beyond_stride': 2,
}
return override(base_config, override_config)
class SWideRNet(AxialResNetInstance):
"""A SWideRNet instance.
Note that the implementation is different from the original SWideRNet in:
(1) We apply strided convolutions in the first residual block of a stage,
instead of the last residual block.
(2) We replace the strided max pooling layer in the stem by applying strided
convolution in the immediate next residual block.
(3) We (optionally) use squeeze and excitation in all five stages, instead
of the last four stages only.
Reference:
Scaling Wide Residual Networks for Panoptic Segmentation,
https://arxiv.org/abs/2011.11675
Liang-Chieh Chen, Huiyu Wang, Siyuan Qiao.
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
return {
'num_blocks': [3, 6, 3, 3],
'classification_mode': True,
'backbone_type': 'wider_resnet',
'use_axial_beyond_stride': 0,
'backbone_use_transformer_beyond_stride': 0,
'block_group_config': {
'drop_path_beyond_stride': 4,
'conv_use_recompute_grad': True,
},
}
class AxialSWideRNet(SWideRNet):
"""SWideRNet with axial attention blocks in the last two stages.
Note that the implementation is different from the original SWideRNet in:
(1) We apply strided convolutions in the first residual block of a stage,
instead of the last residual block.
(2) We replace the strided max pooling layer in the stem by applying strided
convolution in the immediate next residual block.
(3) We (optionally) use squeeze and excitation in all five stages, instead
of the last four stages only.
Reference:
Scaling Wide Residual Networks for Panoptic Segmentation,
https://arxiv.org/abs/2011.11675
Liang-Chieh Chen, Huiyu Wang, Siyuan Qiao.
Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
"""
@classmethod
def _get_config(cls):
base_config = super(AxialSWideRNet, cls)._get_config()
override_config = {
'use_axial_beyond_stride': 16,
'block_group_config': {
'attention_bottleneck_expansion': 4,
'axial_layer_config': {
'key_expansion': 2,
'value_expansion': 4,
},
},
}
return override(base_config, override_config)
def get_model(name, **kwargs):
"""Gets the model instance given the model name."""
name_lower = name.lower()
if name_lower == 'max_deeplab_s':
return MaXDeepLabS(name_lower, **kwargs)
elif name_lower == 'max_deeplab_l':
return MaXDeepLabL(name_lower, **kwargs)
elif name_lower == 'max_deeplab_s_backbone':
return MaXDeepLabSBackbone(name_lower, **kwargs)
elif name_lower == 'max_deeplab_l_backbone':
return MaXDeepLabLBackbone(name_lower, **kwargs)
elif name_lower == 'resnet50':
return ResNet50(name_lower, **kwargs)
elif name_lower == 'resnet50_beta':
return ResNet50Beta(name_lower, **kwargs)
elif name_lower == 'swidernet' or name_lower == 'wide_resnet41':
return SWideRNet(name_lower, **kwargs)
elif name_lower == 'axial_swidernet':
return AxialSWideRNet(name_lower, **kwargs)
elif name_lower == 'axial_resnet_s':
return AxialResNetS(name_lower, **kwargs)
elif name_lower == 'axial_resnet_l':
return AxialResNetL(name_lower, **kwargs)
elif name_lower == 'axial_deeplab_s':
return AxialDeepLabS(name_lower, **kwargs)
elif name_lower == 'axial_deeplab_l':
return AxialDeepLabL(name_lower, **kwargs)
else:
raise ValueError(name_lower + ' is not supported.')
|